Similar case studies

REF impact found 61 Case Studies

Currently displayed text from case study:

System-on-Chip (SoC) IP cores for Digital TV and Multi-Media Systems

Summary of the impact

Research (1993-2008) on novel silicon architectures and design methodologies for digital signal and video processing led to the creation of world leading semiconductor IP cores (chip designs) for implementing the main video and image compression standards including H.264, MPEG4, MPEG2, and JPEG2000. These have been licensed to semiconductor manufacturers worldwide including Panasonic, Sony, Toshiba and Sharp. Since 2008, such encoders/decoders have been incorporated into all DTV/HDTV SoCs produced by Conexant, NXP, Trident Microsystems and Entropic. They have also been used as the hardware acceleration engines in Intel's C2110 Media Processor. At least 150 million chips worldwide having been manufactured incorporating this technology.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics
Technology: Computer Hardware

X-ray tomography for airport security

Summary of the impact

RTT (Real Time Tomography) scanning systems for airport baggage are becoming increasingly important due to growing air traffic and greater security concerns. Prior to our research, Rapiscan, a leading producer of baggage scanners, had been unable to make full use of the hardware in their latest generation of scanner prototypes. Our novel theory and image reconstruction algorithms are now a core part of a commercially successful 3D scanner that is significantly faster and more accurate than previous generations. The two models, RTT80 and large RTT110, have been approved by regulatory authorities and have already been field trialled at Manchester Airport and deployed at Seattle airport, with further US$20m orders placed.

The research and impact described herein was flagged in the citation for the UoM's 2013 Queen's Anniversary Prize for Higher and Further Education for its work in imaging techniques to support advanced materials and manufacturing.

Submitting Institution

University of Manchester

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

BRITEST – Best Route Innovative Technology Evaluation and Selection Techniques

Summary of the impact

BRITEST is a global leader in the development of innovative process solutions for the chemical processing sector with > £500m of value being realized since 2008. Research in Manchester (1997-2000) generated a set of novel tools and methodologies which analyse chemical processes to identify where and how process improvements could be made. BRITEST was established in 2001 as a not-for-profit company to manage the technology transfer and effective deployment of these tools and methodologies into industry. Manchester holds the IP arising from the underpinning research and has granted an exclusive license to BRITEST for use and exploitation of the toolkit.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

A New Generation of Supercomputers results from the Co-Design of a Computer Chip for Lattice QCD Calculations

Summary of the impact

Impact: Economic gains
PHYESTA designed 8% of the area of the computer chip for IBM's most recent BlueGene/Q supercomputer product. Global install base of design exceeds $500M.

Significance:
Unique experiment in co-design at the cutting edge of technology. Adopted by both IBM and Fujitsu, who have led in Green500 energy efficiency and top500 supercomputer rankings.

Reach:
This supercomputer architecture has been installed in labs in the UK, the US, the EU, and Japan and is accelerating computational science and advanced manufacturing around the globe. In the UK the BlueJoule system installed in the Hartree center at Daresbury is driving HPC uptake in the advanced manufacturing sector.

Beneficiaries:
IBM, Fujitsu, computational science and the HPC community worldwide.

Attribution: This work was led by Dr Peter Boyle (School of Physics & Astronomy, University of Edinburgh) in collaboration with Columbia University and IBM.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computation Theory and Mathematics, Computer Software
Technology: Computer Hardware

Milepost GCC and compiler research at Edinburgh

Summary of the impact

Compiler research at Edinburgh over the last decade has had significant industrial and commercial impact. Early work on pointer conversion is now available in Intel's commercial compilers. Later ground-breaking work on machine-learning based compilation led to the release of MilePost GCC, an enhanced version of the world's widest-used open source compiler supported by IBM. More recent work on parallelism discovery and machine-learning mapping has led to a new ARM Centre of Excellence at Edinburgh.

Submitting Institution

University of Edinburgh

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computation Theory and Mathematics, Computer Software
Technology: Computer Hardware

Unique simulation software tools for the global semiconductor industry

Summary of the impact

The development of unique computer simulation tools has profoundly influenced the design and manufacture of silicon chips fuelling the $300 billion per year semiconductor industry. A pioneer of statistical variability research, Professor Asen Asenov developed understanding and awareness of statistical variability in the nanoscale transistors which make up all silicon chips. Gold Standard Simulations (GSS) was created in 2010 and by 2012-13 had grown revenue from services and licensing to $1million. GSS tools are currently used in foundries providing 75% of all semiconductor production for fabless design companies globally. For example, working with GSS and their simulation tools has reduced the development time for IBM's next generation of CMOS technology by 1 year, representing significant savings in the 3-5 year technology development cycle.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

Integrated and Collaborative Approach to Lifecycle Management in the Built Environment

Summary of the impact

Building Information Modelling and Management (BIM(M)) research at the University of Salford has contributed to the concept and development of an integrated approach to improved efficiency in the construction sector:

  • Adopted in 2011 by the UK Government through its Building Information Modelling and Management (BIM (M)) Strategy, Salford research in BIM(M) has supported the development of this strategy, through demonstrating the approach and its benefits through several live projects and UK/EU government funded research projects, including:
    • Establishing the concept of `nD modelling';
    • Developing and demonstrating the concept of integrated multi-user distributed construction project databases, developing the virtual workspace for collaborative working;
    • Developing process improvement protocol/frameworks;
    • Supporting the development of the international standardisation for the representation and exchange of building information.

Submitting Institution

University of Salford

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computer Software, Information Systems

Communicating Process Architectures: the Future for Systems

Summary of the impact

Modern processor architectures (networked multi/many-core nodes), together with society's expectation of evermore-complex applications, require fluent mastery of concurrency. To enable this mastery, in the last two decades our group has taught, researched and developed fundamental notions of concurrency, new programming languages (occam-pi, and the KRoC toolset), libraries (JCSP, CCSP, C++CSP, CHP), runtime systems (the KRoC/CCSP multicore scheduler) and tools based on formal process algebra (Hoare's CSP, and Milner's pi-calculus).

Our work has had impact in providing new mechanisms for software development in a number of sectors such as chip design, large-scale real-time systems, formal interfaces and testing and the space industry. Testimonials supporting this are available from a variety of industrial and commercial sources (NXP Semiconductors, Big Bee Consultants, Philips Healthcare, 4Links Ltd. and Microsoft Research Cambridge). The breadth of impact of the work is evidenced by download statistics, as well as by third-party contributions to libraries and documentation.

Submitting Institution

University of Kent

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics, Computer Software

Fast binary decision algorithms to enable real time diagnosis of in-flight faults in Unmanned Aerial Vehicles

Summary of the impact

Led by Professor Andrews, a computational method for real time mission planning, based on Binary Decision Diagrams (BDD), was developed in the Mathematical Sciences Department at Loughborough University (LU) from 1993-2003. This is fast and accurate and can be used to support decision-making on system utilisation in real-time operation, which has led to the ability to diagnose in flight faults for unmanned aerial vehicle (UAV) applications.

The research has changed the understanding and awareness of the advantages of BDD, resulting in integration into major industrial trials and proprietary software products, including at BAE Systems, one of the world's largest companies in an area of vital importance to UK security and economic development. The methodology has attracted significant research funding in collaborative programmes with industry.

Submitting Institution

Loughborough University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

User-trainable visual anomaly detection for quality inspection tasks in the food industry

Summary of the impact

A new multi-purpose computer vision system to identify sub-standard food products has been created. The research developed a user-trainable software technology with a range of possible applications, thus overcoming the specificity and other limitations such as the high set-up cost of existing visual inspection systems. This research is achieving impact in several areas within the food industry, including quality analysis of fresh produce, food processing and food packaging. The technology is currently being trialled at the leading post-harvest applied research facility for agricultural storage in the UK, and is also being licensed to a world-leading supplier of food packaging machines and equipment for inclusion in a new product range under development. The longer-term impacts include safer food, reduced food waste, more efficient food production, and better use of natural resources (e.g. reduced use of water, pesticides and other inputs), through early detection of potentially harmful flaws in production and packaging.

Submitting Institution

University of Lincoln

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing

Filter Impact Case Studies

Download Impact Case Studies