Similar case studies

REF impact found 31 Case Studies

Currently displayed text from case study:

ELEC05 - Developments toward low and ultra low voltage electron microscopy (CONFIDENTIAL)

Summary of the impact

Since the 1950s, when they were first developed, scanning electron microscopes (SEMs) have revolutionised science. However, the large physical size of these machines and their aggressive treatment of samples has limited their use. Now research carried out by Professor Mohamed El-Gomati has led to the development of products for global companies including Agilent, Carl Zeiss and Shimadzu. These products include the world's first low-voltage desktop SEM, capable of resolving features smaller than 5 nanometres, and handling radiation sensitive samples such as biological and medical materials, novel photoresists, nanotubes and nanorods. The smaller size has also improved accessibility of such instruments leading to significant efficiency gains for companies and academia worldwide.

Submitting Institution

University of York

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering, Interdisciplinary Engineering

Enabling SEMATECH and industrial member companies to improve their transistor technology

Summary of the impact

Researchers within the Department of Physics and Astronomy at UCL have investigated the properties of defects in bulk HfO2 and at Si/SiOx/HfO2 interfaces. Results have been used by an industrial partner, SEMATECH (SMT), to improve the quality and reliability of high-performance microelectronic devices based on transistors. This has helped SMT to meet project objectives on behalf of member companies such as Intel and IBM, and UCL research results have been consistently highly evaluated by these companies. Recommendations made by SMT have been implemented by industrial partners in their currently manufactured devices, such as the 22nm process technology released by Intel in 2011.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Hitachi

Summary of the impact

Research in the Microelectronics Group of the Cavendish Laboratory in the area of single-electron nanoelectronics, quantum computing and spintronics has been exploited by Hitachi, one of world's leading microelectronics companies. Research breakthroughs made in the Cavendish have defined Hitachi's R&D directions in quantum computing and spintronics, led to several Hitachi product developments and influenced senior Hitachi strategic decision makers regarding the future of computing.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Engineering: Materials Engineering

Enabling space companies to deliver contracts and supporting growth of the space sector

Summary of the impact

UCL's research and development programme in space science and engineering enabled it to complete four major contracts with European and Canadian space companies between 2009 and 2011. These contracts were for the supply of equipment that will fly on European and Indian space missions, and for support of the ground testing of those space missions. The fact that these contracts were won by UCL in a competitive environment against low-cost industrial providers demonstrates that customers value the capability that UCL possesses. By acting as a specialist provider within the UK space sector supply chain, UCL enabled the prime contractors European Astrium Aerospace and Canadian Routes AstroEngineering Ltd. to deliver substantial commercial contracts with space agencies. Its provision of specialist input into these major contracts enabled UCL to also directly support the growth of the commercial space sector.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Technology: Communications Technologies

P5 - Successful commercialisation of microcalorimeter for ultrasensitive heat capacity measurements of magnetic materials

Summary of the impact

Heat capacity is the measurable physical quantity that specifies the amount of heat required to change the temperature of an object or body by a given amount and is an important quantity to establish in any application that requires knowledge of the thermal response of a material. It is quite usual in the development of new materials that the volume of material available in single crystalline form is limited, and the ability to measure small samples sensitively has particular importance for this reason. We claim a dominant influence on the design of an ultrasensitive heat capacity microcalorimeter that is now sold by the UK company Cryogenic Ltd as a heat capacity option for their cryogenic measurement systems. The microcalorimeter makes it possible to measure ultra-small samples, particularly magnetic samples that are invisible to other commercial probes. Research was carried out within Imperial's Physics Department in 2003-04 to develop the instrumentation; the design was published in 2005 after which it transferred to UK company Cryogenic Ltd. In the past three years the approximate total sales of the heat capacity option at Cryogenics amount to £500K, as a valuable component of a physical properties measurement system with a total sale value in the region of £2M [section 5, source E].

Submitting Institution

Imperial College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Impact of the HELIUM Code on UK Government Procurement and Provision of National High-Performance Computing Facility HECToR

Summary of the impact

The High Performance Computing (HPC) application code HELIUM, developed at Queen's University Belfast to assist the development of attosecond technology, has impacted on the provision of public services through guiding procurement and acceptance testing of the high-performance computer facility HECToR. This facility was funded by UK Government with a total expenditure of £113M during 2007 - 2013. The HELIUM code was used for procurement and acceptance testing for the initial HECToR service in 2007 (Phase 1, 11k cores), and its upgrades in 2009 (Phase 2a, 22k cores), 2010 (Phase 2b, 44k cores) and 2011 (Phase 3, 90k cores). The HELIUM code was particularly invaluable in demonstrating that the Phase 2b and Phase 3 systems perform correctly at pre-agreed performance levels, since this code can be adapted to run for several hours over >80k cores.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Theoretical and Computational Chemistry

Bomb detection

Summary of the impact

Research at the University of Cambridge, Department of Physics on sensitive techniques for measurements of magnetic and electrical properties of materials led to the selection of Dr Michael Sutherland as an expert witness in a series of major police investigations involving fraudulent bomb detecting equipment. Scientific evidence Dr Sutherland presented in court was key in securing guilty verdicts, leading to the breakup in 2013 of several international fraud rings with combined revenue in excess of £70 million. This criminal activity had caused significant damage to the reputation of the UK in Iraq and elsewhere.

Submitting Institution

University of Cambridge

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry

A New Manufacturing, Research and Development Centre for e2v

Summary of the impact

Our research on semiconductor materials and devices has led to the establishment by e2v Technologies of a combined manufacturing, research and development facility within the School of Physics and Astronomy. We have adapted and transferred device simulation software to e2v, and have provided epitaxially-grown semiconductors and access to fabrication facilities which have been used in their manufacturing processes. Devices fabricated within the facility, which was opened in 2011, have generated sales of £7M for e2v. This initiative has also led to shifts in the investment priorities of e2v, and mitigated risks to the company arising from import restrictions associated with the US International Traffic in Arms Regulations (ITAR).

Submitting Institution

University of Nottingham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Commercialisation of materials modelling software (Castep)

Summary of the impact

Durham researcher, Prof Stewart Clark, is one of the six original co-developers of the Castep software package which calculates the electronic, physical and chemical properties of materials from first principles. Castep was written to solve a variety of research problems from semiconductor devices and liquid crystal displays, to the behaviour of Earth minerals under very high pressure, molecular dynamics and biological systems. The software package was commercialised for use in industry under license by Accelrys Inc., where it is bought and used by ~1000 high-tech companies for development of new materials in chemical, pharmaceutical, auto and jet engine manufacturing industries. Total sales revenue for Accelerys from the Castep code is in excess of $30M.

Submitting Institution

University of Durham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Theoretical and Computational Chemistry
Engineering: Materials Engineering
Medical and Health Sciences: Neurosciences

UOA09-13: Non-contact sensors for automotive and aerospace applications

Summary of the impact

A device developed for spintronics research at the University of Oxford has been adapted as the basis for robust, high-performance position or composition sensors to detect many different materials including metals, plastics, ceramics and fluids. These sensors are capable of making contactless measurements in very hostile environments. A spin-out company was formed in 2004 to exploit and apply this technology to a wide range of technical and engineering problems and has achieved over £2.5m revenue. These sensors form the key elements of products that have been successfully deployed in automotive and other transport applications. Benefits to end users include ease of use, speed and the cost savings.

Submitting Institution

University of Oxford

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Chemical Sciences: Inorganic Chemistry
Technology: Communications Technologies

Filter Impact Case Studies

Download Impact Case Studies