Similar case studies

REF impact found 32 Case Studies

Currently displayed text from case study:

The economic benefits of finite element/discrete element analysis when applied to industrial problems involving coupled field and multi-fracturing phenomena

Summary of the impact

Computational research work at Swansea concerned with finite element/discrete element analysis, has made a profound impact on the solution of industrial problems. The development and implementation of novel computational algorithms and their subsequent application to leading edge engineering and scientific problems has been effected through the commercial software system ELFEN, developed collaboratively with Rockfield Software Ltd, a spin-out company from Swansea University. ELFEN has enabled the company to expand through the development of an international reputation as a leading provider of computational technology to the defence, manufacturing, oil recovery, mining and other sectors. Specific examples of economic benefit described in this case study are (i) design methodology for weight reduction in glass container production resulting in significant energy and CO2 emission savings and (ii) computational modelling of rock blasting operations leading to substantial economies in the mining industry.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Numerical and Computational Mathematics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Improved aerodynamic design process for the aerospace industry through application of unstructured mesh technology

Summary of the impact

A computational aerodynamics design system (FLITE) developed by Swansea researchers has been of significant economic benefit to the aerospace industry. When introduced, the unstructured mesh FLITE approach was considered by BAE Systems to be a step change in their design cycle. Using FLITE, highly complex modern aerospace configurations could be analysed in short timescales. The FLITE system has since been utilised by a number of international organisations. Its use in the design of the BLOODHOUND project has also contributed to significant public engagement in science and engineering, including a large-scale education programme with which over 5,000 schools have fully engaged.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics
Engineering: Interdisciplinary Engineering

Techniques for Improved Electromagnetic Design in the Aerospace Industry

Summary of the impact

Research at Swansea University in the area of computational electromagnetics has led to better design of aircraft with respect to radar detection and the screening of internal systems from the effect of unwanted electromagnetic field ingress. A key issue was the development of an ability to accommodate electromagnetically large complex bodies having spatially small, but electromagnetically important, features. In addition, procedures for modelling RF threats, including lightning strikes and electromagnetic hazards, were also developed. Such progress has enabled significant improvement in electromagnetic performance of technology produced by BAE Systems reaching across its Advanced Technology Centre and its business units (Military Aircraft and Information, and Naval Ships). This research enabled two-orders-of-magnitude improvement in efficiency of BAE software compared to previously used techniques, significantly reducing design time. These developments were used on major international programmes such as TYPHOON, the Taranis UCAV (unmanned Combat Air Vehicle).

Submitting Institution

Swansea University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

A benchmark tool for high performance computing

Summary of the impact

This case study describes the development, application and commercialisation of an open source tool, BSMBench that enables supercomputer vendors and computing centres to benchmark their system's performance. It comprehensively informs the design and testing of new computing architectures well beyond other benchmarking tools on the market, such as Linpack.

The significance of our code is that, unlike other benchmarking tools, it interpolates from a communication- to a computation-dominated regime simply by varying the (physics) parameters in the code, thus providing a perfect benchmark suite to test the response of modern multi-CPU systems along this axis. The impact of this work has great reach: a start-up company, BSMbench Ltd, has been founded to develop and commercialise the software; adopters have included IBM - one of the giants of the supercomputer world (where it uncovered errors in their compilers); it has been deployed by Fujitsu to validate its systems, by HPC Wales, a multi-site, commercially focussed national computer centre and by Transtec, an HPC company employing over 150 staff; and tutorial articles about BSMBench have appeared in magazines such as Linux Format.

This software tool spawned from our research into "Beyond the Standard Model" (BSM) physics which aims to understand the Higgs mechanism in particle physics at a fundamental level. This involved simulating quantum field theories using bespoke code on some of the fastest supercomputers on the planet.

Submitting Institution

Swansea University

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

The development of new coatings for Tata Steel Europe through collaborative research

Summary of the impact

Collaborative research with Tata Steel has delivered significant economic impact, maintaining leading-edge business performance with new functionally coated metal construction products carrying 40 year warranties, and research contributing to global competitiveness for Electrical Steels. In addition partner company performance through skilled people has been improved through the delivery of 61 highly trained doctoral level coatings leaders and technologists, the majority of whom are now running their own research groups or are director level technologists.

Public interest and engagement activity has focussed on the application of research techniques and in functional coatings for energy through the `Buildings as Powerstations' concept and `Materials Live' events.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Fracture modelling saves money, increases productivity and makes mining safer

Summary of the impact

From 1995 Professor Munjiza's research at QMUL has led to the development of a series of algorithms which can predict the movement and relationship between objects. These algorithms have been commercialised by a range of international engineering and software companies including Orica, the world's leading blasting systems provider (via their MBM software package), and the software modelling company, Dassault Systems (via their Abaqus software). Through these commercialisation routes Munjiza's work has generated significant economic impact which is global in nature. For example, his predictive algorithms have enabled safer, more productive blast mining for Orica's clients — in one mine alone, software based on Munjiza's modelling approach has meant a 10% increase in productivity, a 7% reduction in costs and an annual saving of $2.8 million. It has also been used in Dassault Systems' Abaqus modelling software, which is the world's leading generic simulation software used to solve a wide variety of industrial problems across the defence, automobile, construction, aerospace and chemicals sectors with associated economic impact.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Engineering: Resources Engineering and Extractive Metallurgy

Copperopolis: Regenerating and Transforming an Industrial Landscape in the Lower Swansea Valley

Summary of the impact

Research on the copper industry by Swansea historians has acted as a catalyst for the regeneration of the former Hafod-Morfa copperworks site in the Lower Swansea Valley. Until recently the abandoned site was associated only with industrial dereliction, but historical research on entrepreneurship, innovation and global trade has galvanised a new public appreciation of its international significance. Since 2010, an extensive programme of public engagement activities has persuaded key partners in local government to adopt an ambitious plan to preserve and present its cultural heritage. The project received national acclaim in Research Council UK's 2011 report on `Big Ideas for the Future', which noted that `The example set by the research in Swansea could be used across the UK' (C1).

Submitting Institution

Swansea University

Unit of Assessment

History

Summary Impact Type

Societal

Research Subject Area(s)

Earth Sciences: Geochemistry
Engineering: Environmental Engineering, Resources Engineering and Extractive Metallurgy

12. Process Systems Enterprise Ltd

Summary of the impact

Research into new process modelling tools and numerical simulation and optimisation algorithms at Imperial's Centre for Process Systems Engineering (CPSE) has resulted in a powerful new modelling technology. In 1997, a team from (CPSE) established a spin-out company, Process Systems Enterprise Ltd (PSE, www.psenterprise.com), to commercialise this process and energy systems modelling platform — gPROMSTM and to provide associated leading-edge model based services such as the design of new processes and the optimisation of existing processes.

Based on turnover (£400k at launch to £10m today), PSE is now recognised as a leading provider of process modelling technology and modelling platforms, with over 100 employees in high-end jobs. Its customers include most of the world's leading chemical, energy and automotive companies (e.g. Dow Chemical, BASF, BP, Shell, ExxonMobil, Toyota, Honda, Ford, Mitsubishi Chemicals) and it has a strong international presence with offices in the UK, US, Germany, Japan and Korea and agencies in China, India, Saudi Arabia and Thailand. The overall benefit to industry over the REF period is estimated to be £400m. The software allows customers to model, understand and optimise their processes in an unprecedented manner, leading to improved designs and more efficient operations. The gPROMSTM software is used in over 200 universities for both teaching and research (primarily the latter), where it enables research into new chemical and energy processes to take place.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics, Information Systems

Unique simulation software tools for the global semiconductor industry

Summary of the impact

The development of unique computer simulation tools has profoundly influenced the design and manufacture of silicon chips fuelling the $300 billion per year semiconductor industry. A pioneer of statistical variability research, Professor Asen Asenov developed understanding and awareness of statistical variability in the nanoscale transistors which make up all silicon chips. Gold Standard Simulations (GSS) was created in 2010 and by 2012-13 had grown revenue from services and licensing to $1million. GSS tools are currently used in foundries providing 75% of all semiconductor production for fabless design companies globally. For example, working with GSS and their simulation tools has reduced the development time for IBM's next generation of CMOS technology by 1 year, representing significant savings in the 3-5 year technology development cycle.

Submitting Institution

University of Glasgow

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Condensed Matter Physics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Electrical and Electronic Engineering

The Benefits to Business and Practitioners of Advanced manufacturing by printing of Complex Inks

Summary of the impact

Research in the Welsh Centre for Printing and Coating (WCPC) at Swansea University has produced a sophisticated understanding of the physics of the fluids and interfaces in the printing process, and has pioneered the development of printing with complex, multi-phase inks. The application in volume manufacture made possible by the research has generated significant, multi-million pound, economic impact in the printable electronics and packaging industries, directly leading to the creation of new high technology printed products, including next generation lighting. It has also led to the development of the supply chain for complex functional inks, whilst a comprehensive revision of the ISO standard on ink colorimetric characterisation in 2013 has demonstrable impact on practitioners.

Submitting Institution

Swansea University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies