Similar case studies

REF impact found 5 Case Studies

Currently displayed text from case study:

Decision Analysis and Support Tools for the Aerospace Industry

Summary of the impact

Research carried out at the University of Southampton has enabled major players in the aerospace industry — among them Rolls-Royce, Airbus, and Boeing — to produce more fuel efficient, longer lasting engines and aircraft at reduced cost. The research has provided the aerospace industry with modelling tools and software enabling companies to explore complex new designs quickly whilst managing product risk in a competitive market. The research team has also developed new design processes for unmanned aircraft, which — as a result of strong media interest - improved public understanding of such new technologies through worldwide coverage. A spin-out company has achieved strong technological and economic impacts in its own right.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics

Integrating Domain Based Engineering Knowledge in Computational Models to Enhance Design Processes for Engineering Jet Engines at Rolls-Royce

Summary of the impact

Research led by Professor Chapman at the Knowledge Based Engineering (KBE) lab has resulted in a thriving partnership with the aerospace division of Rolls-Royce. KBE research captures domain-based knowledge and integrates it into refined computational models with automated tools to enhance design processes for engineering complex systems. This research has contributed to important improvements in the design processes used by Rolls-Royce to achieve substantial benefits in terms of accuracy, efficiency and ease of design and innovation in the development of jet engines. The techniques have also been exploited to enhance decision support processes for sustainable energy.

Submitting Institution

Birmingham City University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computer Software, Information Systems

Enhanced Performance of Permanent Magnet Synchronous Motors, Reduced Manufacturing Material and Time to Production

Summary of the impact

Research conducted since July 2008 by the University of East London in collaboration with Control Techniques Dynamics (CTD), a leading manufacturer of Permanent Magnet Synchronous Motors (PMSMs), has led to the development of a software tool called the PMSM analyser. This tool has helped CTD to improve its motor design methodology by incorporating electromagnetic, thermal and cost models, together with genetic algorithms. In turn, the design optimisation allowed CTD to enhance motor performance and reduce manufacturing time by 30-40%, leading to an increase of 20% in company sales between 2008 and 2013. During the same period the company was able to cut materials usage by 15%.

Submitting Institution

University of East London

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics

Improved efficiency and design practice in European maritime industry

Summary of the impact

The impact relates to improved productivity, operational efficiency, working practice and knowledge management within the European maritime industry through the use of a Virtual Integration Platform (VIP). The platform is a software package developed within the University of Strathclyde that has been used by eleven European ship design, engineering and project management consultancies, which specialise in the application of advanced computational design, analysis and physical modelling techniques within projects on an international scale. Specific company benefits of using the VIP include: 67% reduction in process time; guaranteed data consistency; additional productivity of 15 hours/day from automated over-night operation; capturing and reuse of expertise; cost effectiveness (lack of data consistency typically costs €100k per project); and ease of operation within complex design processes.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Built Environment and Design: Design Practice and Management

International standards and working practices of UK Aerospace & Defence industry changed by reliability growth modelling

Summary of the impact

New business models, technological innovations and global markets, demand that engineering firms better manage how they grow and achieve reliability during product development. A reliability growth modelling framework, developed from research at the University of Strathclyde, is being used by and influencing UK industry practice in the aerospace & defence sector. Our model underpins the modern approach to reliability growth management in Aero-Engine Controls (a Rolls-Royce company), Selex ES, and contributes to the Reliability Case required by the Ministry of Defence. The Strathclyde model is included in the international reliability growth standard (IEC 61164) which is adopted globally by manufacturing firms and procurement agencies.

Submitting Institution

University of Strathclyde

Unit of Assessment

Business and Management Studies

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Information Systems
Economics: Applied Economics

Filter Impact Case Studies

Download Impact Case Studies