Log in
Low-cost wireless solutions beyond the technologies available previously and developed at Loughborough University since 2005 are used by IDC, and Sure, who integrate these technologies in several products and services so generating impacts in terms of:
The technologies have been deployed in a logistics distribution centre (ToysRUs), an automotive manufacturing process (Toyota), and a safety and security system (Sure).
Mobile technologies and in particular mobile applications have become key drivers of the economy in many countries especially those that lack established communications infrastructures. Since 2003, the research team led by Professor Al-Begain has created both significant infrastructure and know-how that became the base for the creation of the £6.4million Centre of Excellence in Mobile Applications and Services (CEMAS) that is providing research and development to SMEs in Wales to increase their competitiveness. In the first three years since its inception 28 projects have been completed and 66 companies have received services.
Lancaster University's pioneering research on Quality-of-Service (QoS) architecture has led to significant impact on the development of TETRA (Terrestrial Trunked Radio) — the digital radio standard used by emergency and public safety services globally. The route to impact was via UK projects on Mobile and Emergency Multimedia. It involved the transfer of QoS technology and know-how to HW Communications Ltd (HWC), a Lancaster-based SME. HWC became instrumental in developing the outcomes of our collaboration in TETRA's Multimedia Exchange Layer (MEX) standard and its specification for TETRA II (or TETRA Enhanced Data Services, TEDS) — a new version of TETRA that enables multimedia data services. MEX was adopted as a new clause in the TETRA II release in 2010. The impact is that vendors of TETRA equipment manufactured after 2010 can implement MEX in their products, thereby leveraging Lancaster's pioneering QoS research to enable applications to obtain the best possible level of service in a standardised way — which is absolutely crucial for the public-safety and related applications for which TETRA is being used.
The Railway Systems Group develops state-of-the-art condition monitoring and instrumentation systems that identify system faults before they degrade into failures that cause passenger disruption. The key impacts of the Railway Systems Group lie in the following areas:
Examples of direct quantifiable impact are a reduction of over 60,000 minutes in train delays over the last one year period through monitoring of 5,600 railway point machines (the cost to Network Rail of delays is between £20/min to £160/min). Also, the deployment of an award winning conductor shoe monitoring system, which has resulted in an estimated savings of 12,150 minutes. Expert advice and practical prototypes have been through active contracts from railway companies totalling £4.2M. This includes an influence in the £7 billion successful order from the Department for Transport to Hitachi for new trains, energy saving strategies reported by the Office of the Rail Regulator and evidence to the Transport Select Committee on winter operations. These have been achieved by working extensively with the British and international railway industries in the area of condition monitoring and bespoke instrumentation systems that support an improvement in the dependability of rail travel.
Body Sensor Networks (BSN) research developed novel sensing algorithms and technology suitable for on-body pervasive sensing suitable for healthcare, well-being and sporting applications. The main impact includes:
Many utility services are distributed using buried infrastructure beneath roads; inaccurate location leads to wasteful excavations and additional costs for service providers, businesses and the public. The Mapping the Underworld (MTU) project developed a proof-of-concept device to locate buried assets which can overcome problems of inaccurate mapping. This programme has acted as a crucial catalyst for the sector, leading to a series of significant actions by the industry informed by the MTU project. For instance, JK Guest, a major private sector contractor, invested £2m to establish the first vocational training centre for underground utility mapping in the UK to a specification developed by the Birmingham researchers; this centre opened in 2012 and more than 600 people had been trained there by July 2013. MTU and the industry promoted the development of an industry-standard for underground utility surveying, leading to the agreement of the British Standards Institute to develop a new standard which is being developed with sponsorship by the Institute of Civil Engineers. These, and the other impacts described in the case study, demonstrate the impact made to date on practitioners and professionals in the sector; these are the building blocks for the realisation of extensive economic impact from reduced disruption and the pro-active condition management of buried utilities.
Research during the 1990's at Newcastle University resulted in the development of CANopen (Control Area Network open), a manufacturer independent communication protocol for connecting multiple devices used in industrial systems. It has resulted in opening up the market by providing the platform for a low-cost simplified method of connecting off-the-shelf devices to communicate effectively over a network, benefiting the global economy and inspiring innovation. The significance of the impact is evident by the wide incorporation of the technology in a diverse range of products ranging from health care, automotive, renewable energy, rail and aerospace industries. The reach of the impact is evident by its use in product development by national and international companies and is the de-facto European standard EN 50325-4 (CiA 301).
A team at the University of Sunderland has undertaken research into equipment maintenance for over 20 years. This has been undertaken within a series of funded UK and EU projects. The work of the team has resulted in a new model for maintenance strategy, and the development of novel artificial intelligence algorithms to monitor the condition of key factory assets. A series of software tools have been developed in collaboration with industrial partners. These tools and the strategic model have been tested in industrial settings and have had impact in the UK, across the EU, and internationally.
Pioneering research at Bangor on the advanced communications technology termed Optical Orthogonal Frequency Division Multiplexing (OOFDM) has enabled industrial impact with global implications. OOFDM was a candidate technique for the ITU-T G989.1 NG-PON2 and the IEEE 802.3bm standards and is currently under consideration by the IEEE 802.3 400Gb/s Ethernet Study Group. Supported by 8 patent families and first-phase funding of £1.1M, in 2013, the pre-revenue Bangor University spin-off company Smarterlight Limited, was established. Smarterlight has deployed services to several international telecommunications companies to develop advanced solutions for access optical networks and data centres.
The Technology Management Group (TMG) in the Department of Space and Climate Physics (also known as the Mullard Space Science Laboratory, or MSSL) at UCL has developed a range of professional training courses for industry that promote a forward-looking approach to the management of technology projects. Industrial customers have invested almost £2.4 million on the training within the REF impact period, greatly valuing its impact in helping their staff deal with the challenges of modern, complex projects, such as achieving high reliability in network-enabled systems that need to perform in the harshest environments. The training has improved engineering capability and organisational effectiveness for its customers, helping them to deliver excellent performance — to budget, on time and with the quality and functionality required. The TMG has also contributed to a systems engineering competency framework that is being used worldwide in the professional certification of systems engineers.