Research Subject Area: Other Physical Sciences

REF impact found 177 Case Studies

Currently displayed text from case study:

UOA09-11: Absolute distance measurement

Summary of the impact

The performance of absolute distance measuring systems has been improved in terms of accuracy, traceability, reliability and cost through the introduction of new methodology arising from research at the University of Oxford. This has brought commercial benefit to a German company making measurement systems, through the creation of a new product line. New capabilities for measurement have been delivered to a first customer in Germany. The research has also resulted in the establishment of new activity at the National Physical Laboratory, and influenced UK and European technology roadmaps for future manufacturing.

Submitting Institution

University of Oxford

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Technology: Communications Technologies

Adoption of new engineering solutions to reduce the patient experience of intense acoustic noise during Magnetic Resonance Imaging (MRI)

Summary of the impact

Reduction of unpleasant ambient noise during MRI has been enabled through innovative engineering solutions developed at the Medical Research Council Institute of Hearing Research (MRC IHR). Intellectual property was licensed to Optoacoustics Ltd and the resulting OptoActive™ active noise-cancelling headphones for MRI are the only one of their type commercially available, enabling free conversation between patients and clinicians. The product was formally launched in September 2012 and has worldwide sales including in the USA, Europe, Asia and the Middle East.

Submitting Institution

University of Nottingham

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Medical and Health Sciences: Neurosciences

Advances in Gamma-Ray Detection and Imaging

Summary of the impact

The University of Southampton's distinguished body of work on the design of technology for gamma-ray detection and imaging has informed new counter-terrorism practices. Technological advances arising from the research have been crucial to delivering significant benefits in the fields of homeland security and nuclear safety — the latter particularly in the wake of the 2011 Fukushima disaster. A spin-out company, Symetrica, currently employs 26 people in the UK and the USA, has a forecast turnover of more than £10 million for 2013-14 and has been recognised as an example of best practice. It is a technological leader in the field of radioactive isotope identification.

Submitting Institution

University of Southampton

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences, Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Advancing Clean Energy Research and Biosecurity through Novel Bragg Grating Technologies

Summary of the impact

Ultra-precise Bragg grating writing-technology, invented in the Optoelectronics Research Centre (ORC), has led to impacts in the areas of security, safety, detection of bio-hazards and the underpinning laser technology currently being pursued for clean energy generation for future energy security. This case study highlights two aspects of the technology namely: planar-based for optical microchip sensors in areas such as portable detection of biohazards, which has resulted in the spin-out Stratophase, and fibre-based, inside the US National Ignition Facility (NIF), the world's largest laser system, based in California, built for fusion-energy research, which has ORC fabricated fibre Bragg gratings within its laser amplifier chains. These ultra-high precision laser-written engineered gratings have enabled important advances in biosecurity, management of environmental hazards and clean energy research.

Submitting Institution

University of Southampton

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Materials Engineering
Technology: Communications Technologies

Antimatter: From CERN to Hollywood

Summary of the impact

In public perception, antimatter used to be associated with science fiction, but the creation and trapping of antihydrogen at CERN by the ATHENA and ALPHA Collaborations has sparked world-wide media interest in the real science of antimatter. Building on this, we started a campaign of public dissemination and education to promote and explain our work through media interviews, popular articles, and public lectures including a Welsh language component. We developed software simulators that have been used by school pupils in Masterclasses to re- create virtually CERN's antihydrogen production. YouTube clips and webcasts with over 100,000 hits have been produced and we have hosted thousands of visitors per year in CERN. These activities resulted in improved understanding of antimatter among school students and the wider population, and a radical change in the public perception of antimatter, which is now associated with the experiments at CERN rather than with Star Trek.

Submitting Institution

Swansea University

Unit of Assessment

Physics

Summary Impact Type

Societal

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences

Benchmark Testing in High Performance Computing

Summary of the impact

High Performance Computing (HPC) is a key element in our research. The Particle Physics Group has accumulated expertise in the development and optimisation of coding paradigms for specific supercomputer hardware. Our codes are deployed on supercomputers around the world, producing high-profile research results. We have developed a simulation environment, BSMBench, that is, on the one hand, flexible enough to run on major supercomputer platforms and, on the other hand, pushes supercomputers to their limits. These codes are used by IBM and Fujitsu Siemens for benchmarking their large installations and mainframes. The third party company BSMBench Ltd has commercialised the usage of our codes for analysing and optimising HPC systems of small and medium-sized enterprises.

Submitting Institution

Plymouth University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Information and Computing Sciences: Computation Theory and Mathematics

Bristol research helps extend life of nuclear power stations, with major financial and environmental benefits

Summary of the impact

Researchers at the University of Bristol's Interface Analysis Centre played a key role in making it possible to extend the life of two nuclear power stations. Their insights into how the microstructure of reactor-core graphite degrades during service and how the material fractures enabled Magnox Ltd to construct a convincing safety case for Oldbury nuclear power station to operate for an extra four years and Wylfa power station to run for an additional four to six years. In terms of the value of the electricity generated, these extensions are worth some £5 billion. In addition, the longer lifespan of these low-carbon power sources means that less energy has to be generated from other, high-carbon sources, with the environmental benefit of an overall reduction in CO2 emissions.

Submitting Institution

University of Bristol

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering, Materials Engineering

Global sales of tomographic instruments benefiting process industries

Summary of the impact

Research into industrial process tomography has been performed at the University of Leeds from 1999 to the present day with much of this being in collaboration with Industrial Tomography Systems plc (ITS). This research, together with the associated intellectual property, has provided the foundation of 5 innovative new products developed and produced by ITS during the eligible period. These new products have generated sales of £5m and are in large part responsible for increases in turnover and employment of approximately 60%, and exports of 67% since 2008. These instruments are used in a significant number of new applications and are generating major benefits to end users in the oil and gas, pharmaceuticals, chemicals, consumer products, minerals and food sectors.

Submitting Institution

University of Leeds

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Interdisciplinary Engineering

Catalysing the Clinical Application of High-Field Magnetic Resonance Imaging (MRI)

Summary of the impact

Nottingham researchers constructed the world's first 3T MRI scanner, thus demonstrating the viability and benefits of high-field MRI. This provided a stimulus for magnet and MRI system manufacturers to develop 3T scanners, which have now become established as the standard platform for high-end clinical MRI studies. We estimate that since 2008: 2500 3T scanners have been installed, representing a global investment of $5 billion;and 30-40 million patient examinations have been performed with 3T MRI scanners. Technical advances which underpinned the Nottingham 3T scanner also impacted on the development of functional MRI, thus opening up a new field of medical research and clinical application. In a subsequent phase of research, the Nottingham group developed ultra-high (7T) magnetic MRI in partnership with PhiIips; forty 7T MRI scanners (current unit cost >$10M) have now been installed across the world.

Submitting Institution

University of Nottingham

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Biomedical Engineering
Medical and Health Sciences: Neurosciences

Entirely new forms of microscopy

Summary of the impact

Basic research combining scanning probe microscopy with thermal, spectroscopic and chemical analysis has enabled the development of powerful, entirely new forms of analytical microscopy. Commercialisation of instruments for micro-thermal analysis began by TA Instruments, in 1998, based on four patents, followed by a Lancaster start-up company Anasys Ltd. These instruments have since been extensively used in multidisciplinary applications by scientific industry and government laboratories. Anasys has sold over 100 units of these nanoscale thermal analysis instruments (total turnover £3M) and many leading polymer industries, research institutes and academic programs worldwide are now users of this technology.

Submitting Institution

Lancaster University

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies