Research Subject Area: Civil Engineering

REF impact found 78 Case Studies

Currently displayed text from case study:

Applying computational reliability engineering to the conservation of maritime heritage structures

Summary of the impact

The Centre for Numerical Modelling and Process Analysis (CNMPA) was asked in 2004 to apply its expertise in computational reliability engineering, usually used in high technology manufacturing, to help save the Cutty Sark ship and in 2010 to help restore the Medway Queen. This case study details how our computational expertise had impact and in particular:

  • substantially aided the conservation and restoration of the historic maritime heritage ships;
  • developed a decision support tool for post-restoration maintenance of the vessel;
  • demonstrated interdisciplinary collaboration;
  • contributed to the local and national heritage tourism industry.

Submitting Institution

University of Greenwich

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Cultural

Research Subject Area(s)

Engineering: Civil Engineering

Assurance of Durable Concrete Structures Using Novel Testing Technologies Developed at QUB

Summary of the impact

By ensuring the durability of notable concrete structures in China, such as the Bird's Nest National Stadium Beijing, Dayawan Nuclear Power Station, Harbin-Dalian Railway Bridges, Qingdao Bay Bridge and Beijing-Tianjin Railway Bridges using Autoclam Permeability System and Permit Ion Migration test, developed by Queen's University Belfast (QUB) and sold by a QUB spin-out Amphora Non-destructive Testing Ltd., the savings in future repair costs are estimated to be hundreds of millions of Chinese Yuan (RMB) (the repair expenditure for the three-year period 2009-'11 was RMB 10.2 billion).

Research on permeability and diffusivity testing of concrete on site since 1993 has led to the incorporation of both the Autoclam and the Permit in a corporation standard issued by the Central Research Institute of Building and Construction (CRIBC), China and the test protocol of Permit in a Chinese railway standard.

The training of construction professionals (including more than 200 senior managers from the Chinese construction industry) since 2008 has impacted on improved sales of Autoclam Permeability System and Permit Ion Migration Test, securing around £500k commercial income, and generating new employment in the UK. Since 2008 these test instruments have been sold to 12 countries.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering

Back on Track: Geotechnical Transport Infrastructure for the 21st Century

Summary of the impact

The transport of people, goods, and utilities (e.g. electricity, oil, gas and water) is essential to civilised life, and in turn depends on a robust, reliable and affordable infrastructure. Since 1995, the University of Southampton Geomechanics Group (SGG) has led the development of an enhanced, science-based framework for understanding the behaviour of geotechnical transport infrastructure through monitoring, modelling and analysis. The techniques we have developed have been used by the builders, owners and operators of transport infrastructure both nationally and internationally to develop improved understandings of infrastructure geotechnical behaviour both during construction and in service. This has led to substantial savings in build, maintenance and operational costs; the implementation of effective remediation and management strategies; and significantly improved infrastructure performance.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy

Bristol research helps reduce the threat to people and property from snow avalanches

Summary of the impact

Research carried out in the School of Mathematics at the University of Bristol between 1998 and 2005 has been instrumental in the development of structures that arrest or deflect the rapid flow of snow that characterises avalanches in mountainous regions of the world. The research has been embodied in a series of guidance documents for engineers on the design of such structures and many defence dams and barriers have been built across Europe since 2008. The guidance is now adopted as standard practice in many of the countries that experience avalanches. Investment in avalanche defence projects based on the design principles set out in the guidance runs into tens of millions of pounds. The Bristol research is also used internationally in the training of engineers who specialise in avalanche protection schemes. Given the scale of the threat to life and property from these potent natural hazards, the impact of the research is considerable in terms of the societal and economic benefits derived from the reduction of the risk posed by snow avalanches.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Building acoustics - contributions to European and International Standardisation

Summary of the impact

The impact of building acoustics research by the Acoustics Research Unit at Liverpool has been through knowledge transfer into Standardisation, guidance to industry and take-up by test laboratories. This is evidenced by the active and leading participation of Professor Gibbs and Dr Hopkins on International and European Standards committees, developing measurement and prediction methods for noise in buildings. The research provides the scientific basis of new test codes used by accredited test laboratories and acoustic consultants. It is also feeding into new test procedures developed by R&D teams of Boeing, Seattle, for the control of vibration-induced noise in aircraft.

Submitting Institution

University of Liverpool

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering
Built Environment and Design: Building

Building Monitoring and Preservation: Impacting Homebuilders and Households

Summary of the impact

This study presents the impact of research by Plymouth's Environmental Building Group (EBG) and Centre for Earthen Architecture (CEA) on industry and regulatory bodies. These interconnected groups research the manufacture, construction, preservation and performance (thermal, hygral and acoustic) of new and old buildings of diverse construction, including earth, straw-bale and hemp-lime. EBG/CEA research has impacted the energy consumption of 690+ homeowners (21st Century Living; DECC/Eden) and contributed to national standards for construction and conservation (BRE/DEBA/English Heritage). Industry partnerships/projects include: Zero Carbon House, Kevin McCabe Ltd; Carfrae Sustainable Design; Hukseflux; Cornish Lime Company.

Submitting Institution

Plymouth University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Building, Other Built Environment and Design

CURBE Impact Case Study - 26-06-13

Summary of the impact

The Cambridge University Centre for Risk in the Built Environment (CURBE) investigates techniques to identify, monitor and assess risk. Since 1997, CURBE's research contributed to real- world applications that reduce detrimental impacts of natural and manmade hazards, including the recent Haiti earthquake. Collaborators and users of the underpinning research include the British Council, the Government Office for Science, the US Geological Survey and Federal Emergency Management Agency in the USA, UN Habitat and private modellers and insurance companies involved in risk such as Risk Management Solutions and Willis Re.

Submitting Institution

University of Cambridge

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Political

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Geophysics
Engineering: Civil Engineering

Designing Novel Fire Safe Materials: FIRESAFE

Summary of the impact

The use of fire retardants is a requirement to reduce fire severity and deaths but is also controversial due to environmental (leaching) and health consequences of commonly used halogenated fire retardants. A novel methodology has been developed and validated in the Fire Safety Engineering Research and Technology centre (FireSERT), Built Environment Research Institute, for the prediction of large-scale burning behaviour of fire retarded polymers by combining small-scale (mg size) experiments with computer simulations of fire growth and toxicity. The research has been instrumental for companies in redesigning their products (fire doors and intumescent coatings) and is informing the development of EU regulations regarding the use and replacement of halogenated fire retardants. The research output has been published in leading journals, cited widely internationally and referenced by key organisations.

Submitting Institution

University of Ulster

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Development of acoustic Robust Details enhancing building performance and wellbeing of occupants

Summary of the impact

The Building Performance Centre at Edinburgh Napier University led by Professor Sean Smith was the first to research `robust details' for sound insulation during 2001-2004. This resulted in a government consultation, new regulatory approach, higher quality of life for home occupants, multi-stakeholder engagement and knowledge exchange via a Design Handbook with 4,700 subscribers. Since 2008, over 300,000 robust detail homes have been built, noise complaints have fallen four-fold, site compliance rates have shifted from 35% to 99%, Smith leads a European 32-country robust design group and 16 patented products are manufactured in the UK.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Engineering Design

Development of thin membrane isolators for attached housing enhancing building performance, wellbeing of occupants, resource efficiency and reducing costs.

Summary of the impact

Edinburgh Napier University was the first to develop thin membrane vibration isolators (2005) to allow party walls in new attached homes to be built off raft foundations. This led to the first Proof of Concept for the construction industry (2008) for perimeter isolators for blockwork apartments. Several patents have been granted leading to nine products manufactured by Icopal-Monarfloor, based in Manchester (UK), part of the Icopal global group. Over 15,000 homes have been built using these innovative isolators, delivering cost savings to the industry of over £80 million resulting in economic, environmental and quality of life benefits.

Submitting Institution

Edinburgh Napier University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering

Filter Impact Case Studies

Download Impact Case Studies