Research Subject Area: Mechanical Engineering

REF impact found 37 Case Studies

Currently displayed text from case study:

A new design methodology for civil aero-engine control

Summary of the impact

A unified design methodology for tuning gas turbine engine controllers, developed by researchers in the Department of Automatic Control and Systems Engineering (ACSE), is being used by Rolls- Royce across its latest fleet of Civil Aero Trent engines. Trent engines are used to power, for example, Boeing 787 Dreamliner and Airbus A350 aircraft that have been adopted by the world's leading airlines.

This new methodology has made economic impact through the introduction of a new process for tuning gas turbine engine controllers leading to the adoption of a significantly changed technology. Indicators of impact are:

i) a new control law and design practice, resulting in a unified approach for different projects;

ii) reduced development effort by shortening and simplifying the design exercise and rendering it suitable for modular insertion; and

iii) streamlined verification requirements.

Submitting Institution

University of Sheffield

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Mechanical Engineering

Applications of threaded-fastener research leading to improved plant and transportation safety

Summary of the impact

This case study outlines how research into the frictional behaviour of nuts and bolts (threaded fasteners) has found commercial applications and contributed to the improved safety of transport systems, industrial plant and equipment. A number of significant impacts have developed from a long-term research association between this UoA and the company Bolt Science, based in Chorley, Lancashire. Drawing on UCLan-based research, training materials have been developed by Bolt Science and delivered globally to encourage the safe and correct use of threaded fasteners in the engineering industry. Bolt Science have drawn on research conducted at UClan to inform a major accident investigation by the Rail Accident Investigation Branch as well as solutions to problems in other engineering applications.

Submitting Institution

University of Central Lancashire

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Engineering: Mechanical Engineering
Medical and Health Sciences: Clinical Sciences

Control technologies for advanced energy efficiency and environmental emission reduction in industrial plants

Summary of the impact

Collaborations funded through EPSRC Interact and RCUK UK-China Science Bridge resulted in QUB's advanced control research having important economic and environmental impact in China, Pakistan, Vietnam. This includes the creation of new core modules for the Shanghai Automation Instrumentation Co (SAIC) SUPMAX Distributed Control System series of products now in use for whole plant monitoring and control to maximise energy efficiency and reduce pollutant emissions. These products have since 2008 increased SAIC's revenue by over $50M p.a. Related networked monitoring technologies have been successfully deployed in Baosteel's hot-rolling production lines and in the Nantong Water Treatment Company that treats 20,000 tonnes of industrial waste water daily.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Engineering: Mechanical Engineering

Enhancing civil and public understanding of environmental noise propagation

Summary of the impact

Research carried out in UCL's Department of Mathematics addresses the accurate coupling of acoustic source fields to noise propagation models, for the determination of far-field environmental noise exposure. The work has increased understanding of issues related to noise propagation from infrastructure including roads and wind turbines, in the UK and internationally. For example, it has led to changes in thinking about freeway noise mitigation strategies at Arizona Department of Transportation (ADOT), discussion of concerns about the UK's assessment of noise propagation from wind turbines by the Institute of Acoustics, and improved understanding of sound-related issues associated with a gas compressor station in the southwestern US that are of interest to local Indian tribes. The research also stimulated interest and discourse by groups and individuals including the Acoustic Ecology Institute in the US, a community group in Germany, Washington State Department of Transportation, the US Federal Aviation Administration, and an artist based in Berlin.

Submitting Institution

University College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Classical Physics
Engineering: Mechanical Engineering, Interdisciplinary Engineering

Gas Turbine Internal Air Systems Research: Economic and Environmental Impact

Summary of the impact

There have been both direct and indirect contributions to cost savings, reduced fuel consumption and reduced CO2emissions through Sussex research into gas turbine engine technology. Rolls-Royce and GE Aviation have benefited from experimental measurements that have allowed improvements to internal air systems flow modelling. This has led to savings in engine testing of approximately £10M over the period; indirectly it has also led to substantial economic benefits through reduced costs for engine manufacturers and their airline clients, and to improved design of internal cooling and sealing systems, which has direct impact on reduced fuel consumption and emissions.

Submitting Institution

University of Sussex

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Mechanical Engineering, Interdisciplinary Engineering

Identification and Active Control of Multiple Sources of Sound

Summary of the impact

Work at the Institute of Sound and Vibration Research (ISVR) has led to a sophisticated new understanding of a number of multiple-input multiple-output (MIMO) problems in acoustics. The effects are wide ranging, attracting heavyweight industry sponsors and driving valuable new innovations in home entertainment, construction, aviation and defence. In particular, research has led to the deployment of new "active" methods for controlling noise and vibration within aircraft. Systems have been installed in over 200 propeller aircraft since January 2008, giving a total number of 1000 aircraft treated to date and benefitting 177 million passengers worldwide. Noise reduction systems based on patents resulting from the unique ISVR methods are being developed for maritime use by BAE Systems. The underpinning science has significantly cut the cost of noise tests on Rolls-Royce jet engines, saving US$4 million to date and reducing their environmental impact. It has led to the development of mass-produced systems for living-room 3D sound, global sales of which have reached US$7.2 million.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Mechanical Engineering
Technology: Communications Technologies
Medical and Health Sciences: Neurosciences

Leading the way in aircraft noise reduction

Summary of the impact

Research at the University of Southampton's Airbus Noise Technology Centre (ANTC) and the Rolls-Royce University Technology Centre (UTC) in Gas Turbine Noise has given Airbus and Rolls-Royce tools to understand, predict and reduce noise pollution from commercial aircraft, ensuring that they are on track to meet the EU's stringent noise reduction targets, and maintaining their competitive edge over key rivals Boeing, GE and Pratt and Whitney. The implementation of new low-noise technology from Southampton has already begun to benefit the millions of people who live near our busiest airports (250,000 within the inner 57dBA Leq contour at Heathrow alone).

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Mechanical Engineering, Interdisciplinary Engineering

4. Low-Carbon Engine Design Through Integrated Computer Simulation-Validation

Summary of the impact

Cardiff University's research has provided quantitative characterisation of transient fuel sprays under engine condition for the first time. This has enabled integrated design optimisation of Gasoline Direct injection (GDi) engines, through computer simulation validated by Cardiff's experimental measurements. The method has been developed and used in collaboration with Ricardo, a world-leading engine design consultancy, and has resulted in:

Economic impact

  • Ten contracts, generating Ricardo revenue of over £20M from major OEMs worldwide (including Ford, GM, SAIC, Proton and Chrysler);
  • An additional $7M Ricardo contract secured with a major US manufacturer (2013);
  • Increased licence sales (over £1M/year sales worldwide) for commercial software `VECTIS';
  • A novel tri-fuel Spray-Guided Direct Injection (SGDI) production engine designed and developed on behalf of PETRONAS (Malaysia).

Environmental impact
There have been substantial reductions in global CO2 emissions. Prior to 2012, GDi engine production had resulted in over 20M tonnes CO2 reduction globally, including 10M tonnes across Europe. A global reduction of 10M tonnes/year is predicted by 2020. Gasoline engines designed or developed by Ricardo in collaboration with Cardiff have provided a considerable contribution to this reduction. Cardiff's measurement techniques provided an essential step in designing these engines. For example, the PETRONAS engine uses 20% less fuel and produces 80% less NOx.

Improved Professional Engineering Practice
Cardiff's experimental validation methodology has enabled Ricardo to design engines through simulation rather than step-wise empirical development, significantly reducing lead time.

Submitting Institution

Cardiff University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Automotive Engineering, Mechanical Engineering, Interdisciplinary Engineering

09 - Low Loss Hydraulic Power Transmission for Wind Turbines

Summary of the impact

This addresses improvements in the design of hydraulic transmission systems, for vehicular and renewable energy generation systems, by replacing the mechanical gearboxes to reduce their significant energy losses. This ERPE design of novel digitally controlled hydraulic transmission systems has culminated in the licensing, manufacture and production of high efficiency hydraulic gearboxes, now registered as the Digital Displacement® (DD®) patented technology.

This novel technology enabled the formation of the spin-out company Artemis Intelligent Power Ltd., with 30 staff in 2008, which was acquired by Mitsubishi Heavy Industries Ltd., in 2010, enabling the growth to 50 employees today.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Mechanical Engineering, Interdisciplinary Engineering

Micro-Wind Turbines: Field Trial And Policy Impacts

Summary of the impact

The University of Southampton's research into micro-wind turbines — small-scale devices for generating electricity at the point of use — has been instrumental in the shift away from turbines mounted on buildings in urban areas to more productive pole-mounted devices in the countryside. It has informed public understanding of the potential and limitations of micro-wind power, and helped inject a new realism into the process of micro-wind power generation, forcing manufacturers to retreat from claims that could not be met. The research has been used to help set government subsidy levels for micro-wind power, and as a basis for modelling projections of future energy.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Engineering: Environmental Engineering, Mechanical Engineering, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies