Log in
The University of Oxford's Professor Nick White and his colleagues successfully demonstrated the effectiveness of artemisinin (an ancient Chinese remedy) in the treatment of malaria. They also pioneered artemisinin-combination therapy (ACT), the most effective and fast-acting malaria treatment in the world. Responsible for saving hundreds of thousands of lives every year, ACT was recommended by the World Health Organization (WHO) in 2006 as the primary method of malarial treatment globally. Malaria kills more than half a million and affects over 225 million people every year.
Research by the University of Oxford's Shoklo Malaria Research Unit (SMRU), Mae Sot (Thailand), has had a significant impact on the health outcomes of pregnant women and infants in malaria affected areas, with findings leading to major changes in World Health Organization recommendations for the prevention and treatment of malaria in pregnancy. Its studies have established the optimum treatment regimes (using artemisinin-based drugs) and have shown that early detection and treatment of malaria, including asymptomatic infection, during pregnancy prevents maternal mortality, morbidity, and improves the outcome of pregnancy.
Malaria in Africa, traditionally diagnosed from fever symptoms, has been massively overdiagnosed, and other causes of fever missed. This research demonstrated the magnitude of overdiagnosis, undertook trials of rapid diagnostic tests, identified alternative bacterial diagnoses, completed economic appraisals and studied prescriber behaviour. The research underpinned a major change in policy by WHO (2010), substantial investments by the Global Fund to fight HIV, TB and Malaria (GFATM), and changed clinical practice, to direct antimalarials to malaria patients only. In one country alone, 516,576 courses of inappropriate artemisinin-based combination therapy (ACT) were averted, worth in excess of $1m.
In spite of recent reductions in transmission, malaria continues to kill over half a million people annually. To assist in fighting the global burden of malaria, Kenya-based Oxford research team, the Malaria Public Health Department (MPHD) has spent the past decade analysing malaria risk, interventions, and control methods, to better define and target malaria. This research has been used to inform local governments, the World Health Organization (WHO), and international funding organisations about malaria risk, interventions and control methods to better define and target malaria.
Malaria kills around 650,000 children a year but can be prevented by killing the mosquito vectors. As mosquitoes become resistant to insecticides the prevention measures can become ineffective. Research at the Liverpool School of Tropical Medicine (LSTM) led by Professor Hemingway FRS has been instrumental in the development of current World Health Organisation (WHO) guidelines to manage resistance, and has led to improved resistance diagnostics and novel monitoring software to integrate entomological and human health outcomes. LSTM's research led to the creation of the Innovative Vector Control Consortium (IVCC) which was established as an independent Product Development Partnership (PDP) in 2008. New, longer lasting formulations of insecticides developed by IVCC are now in operational use, and several novel public health insecticides are under development.
Innovative research into the spatial ecology of vector-borne disease at the University of Oxford led to the setting up of the Malaria Atlas Project (MAP), a programme which has provided sophisticated models of malaria distribution to inform planning and policy decisions of national governments and international agencies. MAP data underpinned the 2012 World Health Organization World Malaria Report and has influenced WHO's policy on malaria. Mapping has also been used in planning and resource allocation by other key players in the fight against malaria: the African Leaders Malaria Alliance, the Roll Back Malaria partnership, the Global Fund and the Global Health Group. More recent research to map the global distribution of dengue risk has been used in vaccine planning by the GAVI Alliance in conjunction with the Gates Foundation.
Malaria in pregnancy causes the deaths of 200,000 newborns and 10,000 mothers annually. The Liverpool School of Tropical Medicine is the coordinating centre of the global Malaria in Pregnancy Consortium. LSTM-led research from 2007 has contributed to the World Health Organisation's (WHO) estimates of the global burden of malaria in pregnancy, showing that 125M pregnancies are at risk, more than double previous estimates. The Consortium has also contributed to a better understanding of the low uptake of existing interventions by pregnant women, and identification of the best prevention strategies. Consequently, WHO updated its policy recommendations in 2007on intermittent-preventive-treatment for prevention of malaria in pregnancy, adopted in 37 sub-Saharan countries, and in 2012, already adopted in 9 countries.
Research in West Africa by LSHTM and partners has shown that monthly treatment with effective antimalarial drugs during the rainy season provides children with a very high degree of personal protection against malaria, can be delivered on a large scale by community health workers at moderate cost, and with no serious side-effects. Based on this research, WHO now recommends that children living in Sahel areas where malaria is a major problem should receive such `seasonal malaria chemoprevention' (SMC) with sulfadoxine-pyrimethamine plus amodiaquine. Ten countries have incorporated SMC into their strategic plans for malaria control.
Integrated Vector Management (IVM) was developed by the World Health Organisation to control vector borne diseases using combinations of interventions. Professor Steve Lindsay and his team have contributed to the development and assessment of many of the tools used for vector control, including insecticide-treated bed nets (ITNs), larval source management and house screening for malaria control. This research has influenced international policy on the control of malaria and other important diseases. It is estimated that 294 million ITNs have been purchased for malaria control, and have helped save 1.1 million lives over the past decade.
Multidisciplinary research at LSHTM has increased understanding of how antimalarial drug resistance emerges and spreads, resulting in impacts on national, regional and international policy-makers and donors, and especially benefiting malaria patients and communities in Southeast Asia. The research influenced (1) WHO recommendations on using sulphadoxine-pyrimethamine for intermittent preventive treatment in Africa and (2) policy responses to the threat of artemisinin resistance including the WHO `Global Plan for Artemisinin Resistance Containment' (2011) and the Thai-Cambodia Artemisinin Resistance Containment programme (2009-2011). These efforts were associated with decreased malaria cases, and reduction in availability of artemisinin monotherapies in Cambodia.