Similar case studies

REF impact found 85 Case Studies

Currently displayed text from case study:

Bayesian methods for large scale small area estimation (SAE)

Summary of the impact

Small area estimation (SAE) describes the use of Bayesian modelling of survey and administrative data in order to provide estimates of survey responses at a much finer level than is possible from the survey alone. Over the recent past, academic publications have mostly targeted the development of the methodology for SAE using small-scale examples. Only predictions on the basis of realistically sized samples have the potential to impact on governance and our contribution is to fill a niche by delivering such SAEs on a national scale through the use of a scaling method. The impact case study concerns the use of these small area predictions to develop disease-level predictions for some 8,000 GPs in England and so to produce a funding formula for use in primary care that has informed the allocation of billions of pounds of NHS money. The value of the model has been recognised in NHS guidelines. The methodology has begun to have impact in other areas, including the BIS `Skills for Life' survey.

Submitting Institution

Plymouth University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Econometrics

The use of multilevel statistical modelling has led to improved evidence-based policy making in education and other sectors

Summary of the impact

Since 2008, statistical research at the University of Bristol has significantly influenced policies, practices and tools aimed at evaluating and promoting the quality of institutional and student learning in the education sector in the UK and internationally. These developments have also spread beyond the education sector and influence the inferential methods employed across government and other sectors. The underpinning research develops methodologies and a much-used suite of associated software packages that allows effective inference from complicated data structures, which are not well-modelled using traditional statistical techniques that assume homogeneity across observational units. The ability to analyse complicated data (such as pupil performance measures when measured alongside school, classroom, context and community factors) has resulted in a significant transformation of government and institutional policies and their practices in the UK, and recommendations in Organisation for Economic Co-operation and Development (OECD) policy documents. These techniques for transforming complex data into useful evidence are well-used across the UK civil service, with consequent policy shifts in areas such as higher education admissions and the REF2014 equality and diversity criteria.

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Computation Theory and Mathematics, Information Systems

Better and faster guarantees of respondent privacy when releasing public statistics

Summary of the impact

Several National Statistics Agencies (NSAs) in Europe now use tools based on UWE research to ensure published tables are protected from hacking attempts to breach data privacy. Provision of high-quality data to policy and decision makers is so important that supplying it to NSAs is often mandatory for organisations and individuals. In return, NSAs, such as the UK's Office for National Statistics (ONS), must guarantee a degree of confidentiality. Our research has benefitted ONS, its clients and data providers, by exposing serious flaws in existing methodologies and techniques for protecting confidentiality and by creating tools for (i) auditing and (ii) protecting large complex tables.

Submitting Institution

University of the West of England, Bristol

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Numerical and Computational Mathematics
Information and Computing Sciences: Computation Theory and Mathematics

Bayesian statistical methods applied to the quantification of forensic evidence

Summary of the impact

In a series of papers published from 1999 on, Aitken (Maxwell Institute) and collaborators applied Bayesian statistics to develop a methodology for the quantification of judicial evidence derived from forensic analyses. They proposed and implemented procedures for (i) determining the optimal size of samples that should be taken from potentially incriminating material (such as drugs seized); and (ii) the estimation of likelihood ratios characterising evidence provided by multivariate hierarchical data (such as the chemical composition of crime-scene samples). Their procedures have been recommended in international guideline documents (including a 2009 publication by the United Nations Office on Drugs and Crime) and have been routinely used by forensic science laboratories worldwide since 2008. The research has therefore had an impact on the administration of justice, leading to a better use of evidence and accompanying judicial and economic benefits. Examples are given from laboratories in Australia, Sweden and The Netherlands.

Submitting Institutions

University of Edinburgh,Heriot-Watt University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Political

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics

Impact on the Statistical Confidentiality Practices of Data Stewardship Organisations

Summary of the impact

Research at the University of Manchester (UoM) has developed new approaches, methods and algorithms to improve the statistical confidentiality practices of data stewardship organisations (DSOs), such as the UK's Office for National Statistics. The research and its products have had significant impacts on data dissemination practice, both in the UK and internationally, and have been adopted by national statistical agencies, government departments and private companies. The primary beneficiaries of this work are DSOs, who are able to both disseminate useful data products, and protect respondent confidentiality more effectively. Secondary beneficiaries are respondents, whose confidentiality is better protected, and the research community, as without `gold standard' disclosure risk analysis, data holders can be overcautious.

Submitting Institution

University of Manchester

Unit of Assessment

Sociology

Summary Impact Type

Societal

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics

Development of an innovative data analysis tool to monitor groundwater pollution and environmental impact

Summary of the impact

With global demand for energy ever increasing, environmental impact has become a major priority for the oil industry. A collaboration between researchers at the University of Glasgow and Shell Global Solutions has developed GWSDAT (GroundWater Spatiotemporal Data Analysis Tool). This easy-to-use interactive software tool allows users to process and analyse groundwater pollution monitoring data efficiently, enabling Shell to respond quickly to detect and evaluate the effect of a leak or spill. Shell estimates that the savings gained by use of the monitoring tool exceed $10m over the last three years. GWSDAT is currently being used by around 200 consultants across many countries (including the UK, US, Australia and South Africa) with potentially significant impacts on the environment worldwide.

Submitting Institution

University of Glasgow

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics

Impact of Machine-Learning based Visual Analytics

Summary of the impact

Visual analytics is a powerful method for understanding large and complex datasets that makes information accessible to non-statistically trained users. The Non-linearity and Complexity Research Group (NCRG) developed several fundamental algorithms and brought them to users by developing interactive software tools (e.g. Netlab pattern analysis toolbox in 2002 (more than 40,000 downloads), Data Visualisation and Modelling System (DVMS) in 2012).

Industrial products. These software tools are used by industrial partners (Pfizer, Dstl) in their business activities. The algorithms have been integrated into a commercial tool (p:IGI) used in geochemical analysis for oil and gas exploration with a 60% share of the worldwide market.

Improving business performance. As an enabling technology, visual analytics has played an important role in the data analysis that has led to the development of new products, such as the Body Volume Index, and the enhancement of existing products (Wheelright: automated vehicle tyre pressure measurement).

Impact on practitioners. The software is used to educate and train skilled people internationally in more than 6 different institutions and is also used by finance professionals.

Submitting Institution

Aston University

Unit of Assessment

Computer Science and Informatics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computation Theory and Mathematics, Information Systems

Industrial impact of Bayes linear analysis

Summary of the impact

This study demonstrates how Bayes linear methodologies developed at Durham University have impacted on industrial practice. Two examples are given. The approach has been applied by London Underground Ltd. to the management of bridges, stations and other civil engineering assets, enabling a whole-life strategic approach to maintenance and renewal to reduce costs and increase safety. The approach has won a major award for innovation in engineering and technology. The methodology has also been applied by Unilever and Fera to improve methods of assessing product safety and in particular the risk of chemical ingredients in products causing allergic skin reactions.

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Economics: Econometrics

Synthetic weather sequences informing engineering design and supporting decisions about infrastructure

Summary of the impact

Research conducted in UCL's Department of Statistical Science has led to the development of a state-of-the-art software package for generating synthetic weather sequences, which has been widely adopted, both in the UK and abroad. The synthetic sequences are used by engineers and policymakers when assessing the effectiveness of potential mitigation and management strategies for weather-related hazards such as floods. In the UK, the software package is used for engineering design; for example, to inform the design of flood defences. In Australia it is being used to inform climate change adaptation strategies. Another significant impact is that UCL's analysis of rainfall trends in southwest Western Australia directly supported the decision of the state's Department of Water to approve the expansion of a seawater desalination plant at a cost of around AUS$450 million. The capacity of the plant was doubled to 100 billion litres per year in January 2013 and it now produces nearly one third of Perth's water supply.

Submitting Institution

University College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Atmospheric Sciences

Bristol’s research into multiscale methods enables more realistic modelling of real world phenomena providing benefit to industry, government and society.

Summary of the impact

Wavelets and multiscale methods were introduced and rapidly became popular in scientific academic communities, particularly mathematical sciences, from the mid-1980s. Wavelets are important because they permit more realistic modelling of many real-world phenomena compared to previous techniques, as well as being fast and efficient. Bristol's research into wavelets started in 1993, has flourished and continues today. Multiscale methods are increasingly employed outside academia. Examples are given here of post-2008 impact in central banking, marketing, finance, R&D in manufacturing industry and commercial software, all originating from research at Bristol. Much of the impact has been generated from the original research via software. This software includes freeware, distributed via international online repositories, and major commercial software, such as Matlab (a preeminent numerical computing environment and programming language with over one million users worldwide).

Submitting Institution

University of Bristol

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Computation Theory and Mathematics
Economics: Econometrics

Filter Impact Case Studies

Download Impact Case Studies