Log in
Recognising a national shortage of young people adopting careers in physics, particularly in Wales, we used our experience in engaging the public with physics research to have an impact on the work of the young people's organisation Urdd Gobaith Cymru at its National Eisteddfod, one of the largest cultural youth festivals in Europe. At the heart of the pavilion, Aberystwyth researchers presented an exhibition of our research on the Sun and the Solar System, supported by the STFC Science in Society scheme. This core activity convinced the organisation to reintroduce a prominent science pavilion (the GwyddonLe), having originally planned not to host a science event. Since 2010, this has grown to be one of the largest and most popular events at the Eisteddfod, attracting external funding and allowing DMAP researchers to have a further impact on society by demonstrating physics to tens of thousands of school children and their parents.
As standard commercially-available imaging systems were unable to deliver the performance necessary for our astronomy research programmes, we formed a partnership with Andor Technology to develop two new specifically-tailored novel imaging systems: one to allow high-speed, high cadence imaging over an array of detectors whose capture times were precisely synchronised (for solar research); one to combine large format CCD detectors with a thermoelectric deep cooling design, removing the need for a separate, expensive cooling system (for exoplanet research). This partnership contributed to the development of new imaging products within Andor Technology (2008 — present), for which the company estimates a current total revenue value of over £1.7M per year. It has also helped Andor to maintain a leading position in the scientific camera market on a global scale, via the press and industry coverage obtained for the new technology development.
UCL's discoveries of the existence of magnetic flux ropes in the solar atmosphere and their link to sunquake generation have stimulated public interest in science and led to a large volume of engagement activities. Since 2008, there has been a high demand for public and schools talks related to research conducted by staff within the Department of Space and Climate Physics — also known as the Mullard Space Science Laboratory (MSSL) — with attendees being inspired and gaining increased knowledge. Teaching resources and talks at teacher training events have enabled teachers to include MSSL research in inspirational science lessons. Sustained and on-going relationships have been developed with local schools, adult education groups, the media and the local community; for example, at the 2009 MSSL open day visitors from the local area benefited from raised awareness and improved knowledge about space science.
The Planetary and Space Sciences (PSS) research group at The Open University has designed, built and deployed space flight instrumentation that is at the core of several iconic ESA (European Space Agency) missions. Following on from that work, the OU team has led and supported UK academia-industry consortia tendering to undertake ESA funded projects preparing for future missions. The work undertaken by these consortia has influenced ESA policy and practice, and helped enterprises in the UK Space Sector to attract significant funding, win contracts to supply ESA with goods and services, and move into new areas of business.
This case study details the impact arising from a sustained public engagement activity with sixth-form students (16 to 17 year-olds) across two Further Education Colleges during 2012/13. The activity was underpinned by research carried out in the Unit (2010-2012). The programme resulted in multiple impacts as defined under "Impacts on society, culture and creativity". Specifically:
These impacts are evidenced by the user feedback collected from 50 questionnaires, factual statements from the teachers and individual participants. This case study details the impact arising from public engagement as described in the recommendations of the National Co-ordinating Centre for Public Engagement (NCCPE).
Lancaster undertakes fundamental research into the space plasma environments. AuroraWatch UK, a spin-out of this research, provides a free service alerting when aurorae may be visible from the UK. The number of AuroraWatch subscribers has increased significantly from 22,000 in 2008 to over 109,000 at present. A survey by the Royal Astronomical Society suggests that AuroraWatch is very effective in promoting interest in science. As a result of subscribing to AuroraWatch, 3667 respondents watch science on television, 4437 read science magazines, websites and blogs, 524 now study science, 865 participate in citizen-science projects, and 1400 listed other changes in their behaviour (e.g. aurora sightseeing trips). The AuroraWatch School programme involves 1800 pupils across UK.
Keele's WASP program of discovering extra-solar planets has had an impact on an international audience of: newspaper science writers; TV science-program producers; radio-program producers; popular-science writers; internet web-page writers; popular book and textbook writers; and through them the wider public. More locally Keele's exoplanet outreach has had an impact on school teachers and children in the surrounding area, on visitors to Keele campus, and through local newspapers and radio. Thus the WASP program has helped to develop the public's interest in planets and astronomy and our understanding of Earth's place in the universe.
The Space & Atmospheric Physics (SPAT) group's magnetometer laboratory at Imperial has developed a small and lightweight magnetic field instrument intended to be flown on future generations of extremely small satellites or planetary landers. The instrument will be used for planetary research or plasma physics in the space environment, and also has application for attitude determination on satellites in Earth-orbit, by comparison with the geomagnetic field (`digital compass'). In 2010 Imperial Innovations granted Satellite Services Ltd (now the SSBV Aerospace and Technology Group) an exclusive 3-year license to market the design for the commercial satellite sector. Satellite Services have sold seven units (circa. € 10,000 per unit) with further commercial sales anticipated in the coming years. Sales of the device have contributed significantly to SSBV's company turnover, indicating the economic impact of the SPAT group's research.
An ambitious programme of research has discovered entirely new families of orbits for solar sails, spacecraft propelled by the pressure of sunlight. The unique applications of these new orbits for space weather, Earth observation and communications are directly influencing top-level space agency thinking and have unlocked industry investments to bring the technology to flight readiness. The new families of orbits are now embedded in agency roadmaps (NASA, European Space Agency (ESA), German Space Agency (DLR)) and help underpin a $20M NASA solar sail demonstration mission. The supporting research has substantial reach due to its impact across a broad range of sectors and has international significance through industry-led technology demonstration missions.202f
This case study concerns the long term (energy) sustainability of emerging winemaking regions. Underpinning research in energy efficiency and renewable technologies informs the case study in determining energy usage and benchmarks, development of energy guidelines/policy, implementation by national professional bodies and adoption of energy best practice by the local industry. Impact is through the adoption and application of benchmarks by winemaking associations, directly influencing (through policy, regulations and standards) the energy expended in making wine. The study is underpinned by international publishing accolades (Solar Energy `Best Full Length Paper in Photovoltaics', Mondol et al, 2005) and a highly prestigious personal Royal Academy of Engineering Global Research Award to Smyth.