Similar case studies

REF impact found 16 Case Studies

Currently displayed text from case study:

More reliable, accurate and cost effective instruments to monitor volcanic activity

Summary of the impact

Andrew McGonigle's research is focused on the development of improved techniques for monitoring volcanic gases, data which are vital for assessing hazard levels and issuing pre-eruption evacuation alerts. The instrumentation derived from this research is considerably cheaper, more reliable and accurate and samples far more frequently than possible previously. These devices have been disseminated to at least 25 countries and are now used as internationally adopted standards by governmental agencies in monitoring and forecasting operations. McGonigle's work led to a Rolex Award for Enterprise in 2008, the Award citation stating that "his combination of science and advanced technology has the potential to save thousands of lives".

Submitting Institution

University of Sheffield

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Medical and Health Sciences: Public Health and Health Services

Volcanic Gas Fluxes

Summary of the impact

Research focussed on understanding volcanic degassing and developing monitoring methods to forecast volcanic activity forms the basis of this impact case; this work was carried out by a group of academic staff and early-career researchers based in Cambridge. The arrival of large fluxes of sulphur-rich gases at the surface can be used to assess magma movement and forecast volcanic activity. This assessment feeds into local governmental decisions regarding risk mitigation and development planning, and the viability of commercial enterprises requiring access to volcanic areas. The development of automatic spectrometer networks for monitoring sulphur dioxide emissions was pioneered by this group. The prototype system was developed at Soufriere Hills Volcano, Montserrat and since then, the design has been patented and adopted at 20 volcano observatories worldwide.

Submitting Institution

University of Cambridge

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geology

Mitigation of volcanic hazards using satellite- and ground-based radar

Summary of the impact

Researchers at the University of Reading have developed and implemented ground and satellite-based techniques that improve the monitoring of impending volcanic eruptions and their aftermath. Our systems have been mainly used in collaboration with the Montserrat Volcano Observatory (MVO) and the local government civil protection committee on Montserrat. In July 2008 the early rescinding of a precautionary evacuation was made possible by these techniques, thereby minimising disruption and lost economic revenue. The deployment of a permanent, operational ground-based instrument on Montserrat provides a capability that will reassure inhabitants and the island's commercial sector of future timely warnings, thereby enhancing their quality of life and allowing companies to return to the island.

Submitting Institution

University of Reading

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Physical Sciences: Astronomical and Space Sciences
Earth Sciences: Atmospheric Sciences
Engineering: Geomatic Engineering

Volcanic Risk Reduction: Improved hazard management and emergency response planning leads to the reduction of volcanic risk worldwide

Summary of the impact

Novel methods in applied physical volcanology, such as expert elicitation, and hazard and risk assessment, developed mostly during the ongoing volcanic crisis at Soufrière Hills Volcano (Montserrat), continues to inform decision making, worker and public safety, and management of administrative hazard zones that control access. These methodologies have been adopted worldwide using Montserrat Volcano Observatory (MVO) as an exemplar by the World Organisation of Volcano Observatories (WOVO). Bristol researchers have advised on institutional programmes and informed international agencies, such as the United Nations and the World Bank, to reduce risk presented by volcanic hazards, and save lives. Such is the impact of Bristol's work at MVO it has been studied by up to nearly one million school children in the UK since 2008.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics
Earth Sciences: Geology
Environmental Sciences: Environmental Science and Management

Kimberlite Diamonds: Advances in kimberlite volcanology research leads to the reduction of financial risk and alteration of strategy and policies within the diamond mining industry

Summary of the impact

Kimberlite research at Bristol has been a collaborative enterprise with De Beers over the past 10 years. The research investigating the geology of kimberlites, and understanding the processes that form them and their associated diamond deposits, has clarified their importance to the diamond mining industry, ensuring high quality geological information informs their commercial activities. The success of this initiative has led to procedures and strategies being changed within De Beers, and led to the mitigation of potential future losses in the form of a decreased risk of failure of a resource model. Typically, such resource models can be valued at between tens and hundreds of millions of pounds.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology

Citizen scientists and environmental volcanology

Summary of the impact

The longevity of volcano impact monitoring projects is a strong argument for the involvement of citizen scientists and volunteers. Professor Rymer and colleagues have run several long-term volcano projects in collaboration with the charity Earthwatch. Over 500 citizen scientists have collected geophysical and environmental data since 2000. The work has impacted on the lives of the volunteers, who are engaged and enthused by scientific research, park wardens in Nicaragua who continue to monitor long-term SO2 release, and authorities in Costa Rica, Iceland, Italy and Nicaragua who use the citizen science data to mitigate the environmental effects of persistent volcanism.

Submitting Institution

Open University

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology, Physical Geography and Environmental Geoscience

OPERATIONAL AND STRATEGIC POLICY FORMATION RELATED TO VOLCANIC HAZARDS IN NORTH-WESTERN EUROPE

Summary of the impact

Impacts: I) Operational decision making during the 2010 Eyjafjallajökull eruption, including that of the UK Civil Aviation Authority to relax airspace restrictions over Europe. II) Strategic planning for future volcanic hazards, including the 2012 classification by the UK National Risk Register of Civil Emergencies of Icelandic volcanic eruptions as a `highest priority risk'.

Significance and reach: The relaxation of airspace restrictions over Europe affected up to ten million travellers and mitigated on-going airline industry costs of up to £130 million per day.

Underpinned by: Research into the size, frequency and dynamics of Icelandic volcanic eruptions, undertaken at the University of Edinburgh (2006 — January 2013).

Submitting Institution

University of Edinburgh

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Geology, Physical Geography and Environmental Geoscience

Volcanic Ash: Societal and economic damage from volcanic ash clouds reduced as a consequence of Bristol research

Summary of the impact

The ash cloud from the eruption of Iceland's Eyjafjallajökull volcano in 2010 caused the cancellation of over 100,000 flights and cost an estimated £3 billion. The much larger eruption of Grimsvötn (also in Iceland) the following year caused only 900 flights to be cancelled and its economic cost was around one per cent of that associated with the Eyjafjallajökull eruption. A key factor in this huge reduction was the improved understanding of ash clouds provided by researchers at the University of Bristol. Drawing on research conducted over two decades and immediately after the Eyjafjallajökull eruption, the Bristol team were able to inform and advise airlines and major decision-makers such as the Civil Aviation Authority, the UK Government and the European Space Agency. The input has since had a beneficial impact around the globe and has directly affected decisions and research strategies made by the Met Office and Rolls-Royce regarding operational developments associated with volcanic ash monitoring and forecasting.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Earth Sciences: Atmospheric Sciences, Geology, Physical Geography and Environmental Geoscience

Safe Fracking: Understanding Environmental Risk and Influencing Government Policy

Summary of the impact

Durham research on hydraulic fracturing was an important part of the UK government's reasoning for lifting the ban on hydraulic fracturing to recover gas and oil from shale, which has an estimated commercial value in the UK of £1500 billion. We demonstrated that hydraulic fractures will not be tall enough to cause contamination of water supplies where there is a sufficient vertical separation (> 600 m) between the shale reservoir and the drinking water aquifer. Durham research has also provided critical data needed by national environment agencies setting regulations, oil and gas companies seeking permission from regulators to drill wells and for local communities that are objecting to hydraulic fracturing.

Submitting Institution

University of Durham

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

LightTouch: Low-cost, rapid oil and gas prospecting technology

Summary of the impact

The future of the world's energy supply is a global concern, as the demands of a growing population rise and the ability to locate precious oil and gas resources becomes increasingly difficult. Researchers at the University of Glasgow have made a fundamental contribution with the development of LightTouch — a Shell proprietary ultrasensitive, technologically advanced gas sensing survey method. In fourteen years of cooperation with Shell, the University of Glasgow has delivered multi-million dollar savings and improved the delivery of efficient survey data, substantially decreasing the economic impact associated with unsuccessful drilling.

Submitting Institution

University of Glasgow

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Engineering: Environmental Engineering

Filter Impact Case Studies

Download Impact Case Studies