Similar case studies

REF impact found 7 Case Studies

Currently displayed text from case study:

Friction Welding for Aeroengine Applications

Summary of the impact

Research at the University of Manchester has supported the development of inertia and linear friction welding of high temperature materials for aeroengine application. The research has guided process parameter development and led to deployment of these new welding techniques at Rolls-Royce plc. In particular, inertia friction welding is now used in modern gas turbine engines, such as the Trent 900, which powers the A380, Trent 1000 for the Boeing 787 and Trent XWB for the Airbus A350. In addition, research has enabled blisk technology (welding of blades on disks), which has delivered up to 30% weight saving on critical rotating components.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

An Innovative Friction Welding Platform for Creep Damage Assessment and Repair of Thermal Power Plant Components

Summary of the impact

This case study deals with research undertaken at Plymouth University leading to the development of an innovative friction stir welding process (friction hydro-taper pillar processing, FHPP) and a bespoke welding platform that improves the assessment and repair methodology for creep damaged thermal power station components. This technology, developed in collaboration with Nelson Mandela Metropolitan University and with industry investment, enables power station engineers to extend the life of power generating plant leading to multi-million pound cost savings (over £66M in direct financial savings are demonstrated in this case) plus significant safety and societal impacts. It has been patented in South Africa and a spin-off company has been formed.

Please note that economic impact values were achieved in Rand (R) but are expressed in £ and therefore worth less in £ today than during the period when the stated impact was achieved.

Submitting Institution

Plymouth University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Engineering: Manufacturing Engineering

Extended life of industrial gas turbine blades using novel coatings

Summary of the impact

This research enables longer component lives for industrial gas turbines and jet engines, and development of new protective coating systems. Siemens and Rolls Royce have improved their selection of materials systems used in components in the hot gas paths e.g. blades, vanes, discs, and seals. Degradation mechanisms in operating turbines, or anticipated in future materials systems, limit the lives of these components and the efficiencies of systems. New functionally graded coatings were created that are highly resistant to hot corrosion and oxidation. Methodology has been adopted in ISO standards BS ISO 26146:2012, BS ISO 14802:2012 and ISO/CD 17224.

Submitting Institution

Cranfield University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering, Interdisciplinary Engineering

So You Think You Can Design A Jet Engine?! - A Toolkit For Communicating Materials Research

Summary of the impact

This prize-winning outreach project exploits our capability in 3D X-ray imaging to showcase our world-leading research activities in aeroengine materials and manufacturing processes, stimulating young people's interest in science and technology by challenging them to design an engine of their own. Involving an extensive schedule of public events, workshops and activity days, as well as a permanent exhibit at Manchester's Museum of Science & Industry, the project has engaged and enthused hundreds of thousands of members of the public. These outreach activities were recognised by the Royal Academy of Engineering through the award of its Nexia Solutions Education Innovation prize.

Submitting Institution

University of Manchester

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

Life extensions of nuclear power plant

Summary of the impact

The lifetimes of Hartlepool and Heysham I nuclear power stations have been extended from 2011 to 2019 as a direct result of our research into the development and application of new measurement techniques for the accurate determination of residual stresses. These life extensions are contributing to the health of the UK economy, maintaining jobs, ensuring security of electricity supply, and deferring the need for decommissioning and replacement of two nuclear power stations at a cost of several billion pounds each. The electricity generated during the life extension period has a market value of over £8 billion. New numerical modelling methods, underpinned by our measurements, are now used by the nuclear industry in life assessment procedures.

Submitting Institution

Open University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Manufacturing Engineering, Materials Engineering

The development of new standards for aluminium rail vehicle welding and crashworthiness

Summary of the impact

The Cullen Report into the Ladbroke Grove rail crash attributed the catastrophic failures of the rail vehicles to "weld unzipping" (brittle fast fracture). Research carried out at Newcastle University into the fabrication and design of aluminium rail vehicles has informed two new European standards: EN 15085 "Railway applications — Welding of railway vehicles and components" and EN 15227, "Crashworthiness requirements for railway vehicle bodies". These two standards have been developed to ensure that the "weld unzipping" failure cannot re-occur in a rail crash. The two standards were formally adopted throughout the EU in 2008, and are mandatory for all aluminium rail vehicles used across Europe.

Submitting Institution

Newcastle University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Materials Engineering, Mechanical Engineering

From source to tap: management of natural organic matter during drinking water production

Summary of the impact

New characterisation tools for natural organic matter (NOM) in drinking water are now used as standard practice within water companies such as Severn Trent Water, United Utilities and Yorkshire Water. The tools inform decisions, and help develop strategic plans on catchment management, source selection, treatment optimisation, and disinfection practice. Water companies experienced difficulties in treating high levels of NOM. Cranfield created a novel characterisation toolkit to measure NOM for its electrical charge and hydrophobicity. Also, new techniques for measuring aggregate properties and emerging disinfection by-products have provided a comprehensive analysis. Two novel treatment technologies are currently marketed. These technologies have raised international interest, resulting in industrial development in Australia.

Submitting Institution

Cranfield University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Environmental

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Other Chemical Sciences
Engineering: Chemical Engineering

Filter Impact Case Studies

Download Impact Case Studies