Log in
Collaboration between the University of Southampton and scientists at GlaxoSmithKline (GSK) has resulted in the adoption of new statistical design of experiments and modelling methods for the confirmation of a robust operating region for the industrial production of new drugs. These methods have enabled larger numbers of factors to be investigated simultaneously than previously possible, improving scientific understanding of the chemical processes and producing savings of time, money and effort. Southampton's new methods were used in a key process required for the registration of a new skin cancer drug with the US Food and Drug Administration, where the research enabled the verification of a robust operating region to be completed in a third of the previous time.
This study demonstrates how Bayes linear methodologies developed at Durham University have impacted on industrial practice. Two examples are given. The approach has been applied by London Underground Ltd. to the management of bridges, stations and other civil engineering assets, enabling a whole-life strategic approach to maintenance and renewal to reduce costs and increase safety. The approach has won a major award for innovation in engineering and technology. The methodology has also been applied by Unilever and Fera to improve methods of assessing product safety and in particular the risk of chemical ingredients in products causing allergic skin reactions.
Clinical trials form a crucial step in translating fundamental medical research into improved healthcare. Many hundreds of trials are conducted every year, each involving hundreds, sometimes thousands, of patients. These trials are expensive, with costs as high as 20 or 30 thousand pounds per patient. Research in Bath on group sequential monitoring and the adaptive design of clinical trials has improved the conduct of clinical trials, leading to:
The impact of this research is economic (the business performance of pharmaceutical companies and businesses that support them), societal (by enhancing public health and by changing the policies adopted by regulators) and ethical (ensuring clinical trials remain safe, while bringing life-saving treatments into clinical use as rapidly as possible).
Novel statistical methods were developed in order to address the needs of Federal-Mogul Corporation (FM), an innovative and diversified $6.9bn global component supplier to vehicle manufacturers, with a broad range of customers in the industrial sector. During 2012, the research underpinned the production of new disc brake pad products for Audi, BMW, Ford, GM, Mercedes Benz and VW. The research has already resulted in significant benefits for the company by improving the manufacturing process, allowing it to be optimised to a mean specification, and by reducing the production cycle time by 30%.
Sustained research in the field of advanced survey design, advanced analysis of complex survey data and the study of public opinion has enabled Professor Cees van der Eijk to make a unique and vital contribution to the work of the Cabinet Office's Committee on Standards in Public Life (CSPL). As an independent public body that advises government on ethical standards across public life in the UK, CSPL has drawn upon Van der Eijk's methodological innovation in data analysis as well as his systematic research to inform its policy recommendations to government. These recommendations have helped to shape policy on matters of public probity, voter registration, MPs' expenses and political party finance. His research for the CSPL has also influenced other independent organisations and the wider public debate on integrity in public life.
Since 2008, statistical research at the University of Bristol has significantly influenced policies, practices and tools aimed at evaluating and promoting the quality of institutional and student learning in the education sector in the UK and internationally. These developments have also spread beyond the education sector and influence the inferential methods employed across government and other sectors. The underpinning research develops methodologies and a much-used suite of associated software packages that allows effective inference from complicated data structures, which are not well-modelled using traditional statistical techniques that assume homogeneity across observational units. The ability to analyse complicated data (such as pupil performance measures when measured alongside school, classroom, context and community factors) has resulted in a significant transformation of government and institutional policies and their practices in the UK, and recommendations in Organisation for Economic Co-operation and Development (OECD) policy documents. These techniques for transforming complex data into useful evidence are well-used across the UK civil service, with consequent policy shifts in areas such as higher education admissions and the REF2014 equality and diversity criteria.
Software has been developed by City University London in cooperation with Rolls-Royce that exploits the strengths of Bayesian statistics in improving the design of aircraft engines. The software, `4Cast', allows engineers to elicit design characteristics that in turn allow the design to be modelled relative to reliability targets. The targets are determined by failure rates. This enables better evaluation of design choices and of the risk of faults and failures in engines and supports rapid decisions as to whether a proposed design meets requirements.
By using 4Cast to enumerate reliability, Rolls-Royce has been able to determine confidence in asset management and in project management policies. 4Cast also supports Rolls-Royce's programme to reduce the so-called `Disruption Index', a measure of the cost of supporting an engine.
The software has had a significant impact on the business performance and consequent economic achievement of Rolls-Royce, a global company supporting civil and defence aerospace, marine and energy markets worldwide.
Our research has been applied directly by Aviva plc. to develop improved products in the general insurance market (e.g. household and car) and in the more specialised area of enhanced pension annuities. As a result, Aviva has become more competitive in these markets and customers are enjoying better value for money. In the case of enhanced annuities, the benefits are in the form of higher pension income for those accurately identified as facing shortened life expectancies. Aviva is the largest insurance company in the UK and the sixth largest in the world.
In a series of papers published from 1999 on, Aitken (Maxwell Institute) and collaborators applied Bayesian statistics to develop a methodology for the quantification of judicial evidence derived from forensic analyses. They proposed and implemented procedures for (i) determining the optimal size of samples that should be taken from potentially incriminating material (such as drugs seized); and (ii) the estimation of likelihood ratios characterising evidence provided by multivariate hierarchical data (such as the chemical composition of crime-scene samples). Their procedures have been recommended in international guideline documents (including a 2009 publication by the United Nations Office on Drugs and Crime) and have been routinely used by forensic science laboratories worldwide since 2008. The research has therefore had an impact on the administration of justice, leading to a better use of evidence and accompanying judicial and economic benefits. Examples are given from laboratories in Australia, Sweden and The Netherlands.
This case study concerns the development and subsequent uptake of the Feature Selective Validation (FSV) method for data comparisons. The method has been adopted as the core of IEEE Standard 1597.1: a `first of its kind' standard on validation of computational electromagnetics and is seeing increasingly wide adoption in industry practice where comparison of data is needed, indicating the reach and significance of this work. The technique was developed by, and under the guidance of, Dr Alistair Duffy, who has remained the world-leading researcher in the field. The first paper on the subject was published in 1997 with key papers being published in 2006.