Similar case studies

REF impact found 30 Case Studies

Currently displayed text from case study:

The improvement of recombinant protein production using the yeast Saccharomyces cerevisiae

Summary of the impact

This case study describes the impact of the discovery by Tuite and Freedman that elevating the levels of the enzyme protein disulphide isomerase (PDI) significantly increases the efficiency with which eukaryotic cells secrete disulphide-bonded proteins. This discovery led to the development of a patented, generic technology for improving both the yield and authenticity of high value, recombinant protein-based biopharmaceuticals. The patent has been used in the safe, animal free production of several FDA and EMEA approved biopharmaceuticals (e.g. recombinant human albumin; Recombumin®), generating multi-million dollar revenues. It has been sub-licensed to four major pharmaceutical companies (Novozymes, Pfizer, Glaxo, Repligen) to aid the safe production of biopharmaceuticals for a range of major human diseases (e.g. Type 2 diabetes).

Submitting Institution

University of Kent

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

The V5 epitope tag: technology for vaccines, diagnostics and disease treatment.

Summary of the impact

Proteins are fundamental to life and to many drugs, vaccines and new types of applied medicine with engineered cells. For this work, it is often essential to tag proteins to enable their identification and purification. The V5 tag, which was developed in St Andrews, is used very widely in this role and has some key advantages over alternatives.

Key impacts are:

  • V5 tag used in 112 issued patents since 1/1/2008, focussed on treatment of cancer, Alzheimer's, viral infection etc.
  • The reagents for V5 tag detection had sales exceeding £600k and generated royalties for St Andrews of £298k (Jan 2008 to Jul 2013).
  • Over 130 different products currently available from commercial suppliers make use of V5 technology.
  • Recent vaccine and diagnostics development has relied on V5 technology.

Submitting Institution

University of St Andrews

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Medical Microbiology

Commercialisation of a platform technology for production of diagnostic and theraputic reagents

Summary of the impact

Protein reagent production techniques developed at QUB, were transferred to UK-based biotechnology company, Fusion Antibodies Ltd, to increase their competitiveness in the production of diagnostic and therapeutic reagents. These techniques were commercialised by the company as the Fusion Expression TechnologyTM (FET) platform technology, to deliver contract research orders. The transfer of this technology allowed Fusion to accelerate its completion of orders and secure higher value projects. This increased competitiveness led to the tripling its technical workforce (at graduate and doctoral levels), securing new orders from over 15 countries and producing on average £300K per annum (from 2008 onwards) in revenue.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

A new process for producing biologically active growth factors: commercial uses for stem cell applications

Summary of the impact

Stem cells play an important role in drug discovery and development of therapeutic interventions. Differentiation (and maintenance) of stem cells into specialised cells is achieved by controlled application of specific, expensive growth factors.

Dr Hyvönen has developed an efficient method for producing highly purified, bioactive human growth factors from E.coli, reducing costs by up to 10-FOLD. tHE TECHNOLOGY HAS BEEN LICENSED TO A major international manufacturer of growth factors (PeproTech Inc.), and to a UK-based specialist stem cell company (CellGS Ltd), enabling them to implement new products and business strategies. Through a departmental facility, material is also being sold to external companies and Cambridge Stem Cell Consortium members. In addition, Dr Hyvönen has made his expertise available to biotech companies through consultancy.

Submitting Institution

University of Cambridge

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

UOA05-17: Everest Biotech Ltd: providing high quality reagents for research

Summary of the impact

Professor Neil Barclay and Dr Nick Hutchings established Everest Biotech Ltd in 2000 in response to the increasing demand for high quality antibodies within the research community. This successful spin-out company has since become a major power in antibody research and production, a position reflected by its portfolio of more than 6,000 antibodies recognising human, mouse and rat proteins, and the generation of 60 new antibodies each month. With offices in the UK and Nepal, Everest Biotech Ltd also benefits one of the poorest communities in the world by providing additional income to hundreds of farmers in the Nepalese foothills.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Pharmacology and Pharmaceutical Sciences

The 2A protein co-expression technology for biomedicine and biotechnology

Summary of the impact

Co-expression of multiple proteins within the same cell is critical for success in many areas of biomedicine and biotechnology. This can now be readily accomplished by using 2A co-expression technology, developed by the Ryan Laboratory in St Andrews University. This technology has been critical in strategies for human gene therapies targeting cancer, production of induced human pluripotent stem cells for regenerative medicine, creation of transgenic animals and plants with improved nutritional properties and the production of high-value proteins for the pharmaceutical industry. Over 400 patent applications in the REF period utilise 2A, and multiple companies market products based on the technology.

Submitting Institution

University of St Andrews

Unit of Assessment

Biological Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics

Exploitation of virus-like particles for vaccinology and the development of safe efficacious Bluetongue virus vaccine

Summary of the impact

Recent outbreaks across Europe of Bluetongue, a viral disease particularly affecting sheep, have driven research at LSHTM by Professor Polly Roy and her team, resulting in the Bluetongue virus (BTV) becoming one of the best understood viruses at the structural and molecular levels. The research has ultimately enabled the creation of several promising new vaccines. In addition the Roy group has contributed towards exploiting virus-like particles (VLPs) as a method to produce safe vaccines against human and animal viral pathogen. The most advanced example is a BTV vaccine for livestock, which is manufactured by Boehringer Ingelheim (BI).

Submitting Institution

London School of Hygiene & Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Economic

Research Subject Area(s)

Medical and Health Sciences: Medical Microbiology

BioVex: UCL spin-out company develops viral cancer therapy to phase III trial and is sold for $1bn

Summary of the impact

UCL spin-out company BioVex was launched in 1999 to exploit research undertaken by David Latchman at the UCL Medical Molecular Biology Unit, Department of Biochemistry. (This department is now part of the Department of Structural and Molecular Biology, UCL/Birkbeck and Latchman is now Master of Birkbeck.) Biovex worked to develop inactivated herpes simplex viruses as therapies, and a promising dual-action oncolytic vaccine for solid tumours, OncoVEXGM-CSF, was taken into successful Phase II trials. In 2011 the company was bought out by Amgen for $1 billion — still the largest ever cash sale of a UK biotech — and Amgen has now taken this virus into a Phase III trial with promising initial results.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Medical Microbiology

Increasing the yield of important enzymes for industry

Summary of the impact

Bacillus species constitute an industrially-important group of bacteria that are used worldwide to produce carbohydrate and protein-digesting enzymes on a large scale. While the bacteria secrete native enzymes at an economically viable rate, generating strains of bacteria that could do the same for non-native enzymes has been an industry challenge. Researchers at Newcastle University have collaborated with industry since the early 1990s to study the mechanism of protein secretion in Bacillus. They discovered bottlenecks in the protein secretion pathway and used that knowledge to engineer more productive strains of bacteria. Since 2008, companies, including Novozymes (the world's largest manufacturer of industrial enzymes), have developed strains of bacteria, based on the Newcastle findings, for use in their manufacturing processes improving yields by more than four orders of magnitude in some cases.

Submitting Institution

Newcastle University

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Albachem: Commercialisation of the chemical synthesis of biologically active human proteins

Summary of the impact

Impact: EaStCHEM spin out Albachem (1994), subsequently incorporated into the Almac group, enabling the latter company to become a world leader in the provision of chemically synthesised proteins.

Significance: Chemical synthesis is competitive with recombinant methods for commercial production of the therapeutic polypeptides that represent ~50% of drugs in big pharma pipelines and have a market value in 2008 of over $13B. The value attributable to Ramage's methods for polypeptide syntheses over the REF period is estimated at approximately £6M.

Beneficiaries: Drug manufacturers, contract research organisations, patients, clinicians.

Research: Studies (1993-6) led by Ramage (at the University of Edinburgh) on new methods for high-yield total syntheses and purification of long polypeptides.

Reach: Almac's protein-manufacturing team remains in the UK with 24 staff members. The Almac Group, headquartered in N. Ireland, has 3300 employees globally (1300 outside UK) and sells to 600 companies worldwide.

Submitting Institutions

University of St Andrews,University of Edinburgh

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology, Microbiology

Filter Impact Case Studies

Download Impact Case Studies