Log in
Gateway technologies have enhanced the ability of end-users to engage with high-performance computing (HPC) programs on massively distributed computing infrastructures (DCIs) such as clusters, grids and clouds. The technologies are focussed on the needs of business, industry, organisations and communities; enabling them to extract added business and social benefit from custom high-value services running on a wide range of high-performance DCIs. Typically, such services are based on computational workflows tailored to specific business needs. DCIs may comprise resources already owned (eg. clusters) combined with resources rented on a pay-as-you- go basis (eg. clouds). Several companies and organisations worldwide are currently using the technologies.
Grid computing research conducted by the High Energy Physics (HEP) Group at the University of Cambridge, Department of Physics has enabled software company IMENSE to develop and commercialise a range of content based image recognition products. The research gained substantial media interest and was featured at the BA Festival of Science 2008.
Research undertaken between 2002 and 2012 at Birkbeck has helped establish a participatory approach to cyber-physical computing as the predominant methodology for the construction of mobile and pervasive computing systems. Cyber-physical systems intimately interlink material entities and their information representations as existing on the Internet. Our specific research contributions in systems architecture, privacy protection and human dynamics have demonstrated how the user's activity can be exploited as the core ingredient in building such systems. Our research has resulted in the implementation of applications that are used to monitor biodiversity across the globe, to assess and support Parkinson's disease patients in the UK, to improve the well-being of office workers in London, to engage the public in a debate about the costs and benefits of pervasive computing, and to inform legislatures in the UK and the US.
In 2011, a leading role was given to Peter Coveney in UCL's Department of Chemistry in defining the future strategy for the UK's e-infrastructure, based on the department's expertise and research in this field. This appointment led to the publication of the Strategy for the UK Research Computing Ecosystem document, which has since stimulated debate amongst policy makers and informed government policy. On the basis of its recommendations, the government has set up an advisory E-Infrastructure Leadership Council and allocated £354 million to improving the UK's high-performance computing capabilities and wider e-infrastructure, a move that is having wide-ranging industrial and economic impact in the UK. Most recently, in June 2013 the Strategy document stimulated further debate about the UK's e-infrastructure at the House of Lords.
Effective industrial design and simulation require efficient and versatile computing systems. As a result of research performed by our team experienced in High Performance Computing (HPC), novel software structures and aligned hardware architectures have led to significant benefits to the energy supply industry and to microprocessor manufacturers.
As a result of our research with supercomputing, simulation times for electric field patterns in power components have reduced more than 30-fold, with accurate complex 3-D outputs for an increased range of configurations, thereby enabling our partner company to achieve results not possible with commercial software and to reduce product development costs by $0.5M - $5M p.a.
Our research has been incorporated by Intel into their numerical libraries and now made available to the general public supported by their latest processor architectures. Intel now has a 82% share of processors, according to the November 2013 Top500 list.
Cloud computing is now used ubiquitously in consumer and commerce domains yielding unprecedented access to computing and data handling at affordable prices.
Work in this field was pioneered at the University of Southampton (UoS) from 1998 onwards and commercialised from 2008 through Dezineforce to enable companies to exploit cloud computing in engineering:
Throughout this period the team has also engaged in outreach to inspire and educate the next generation of scientists and engineers about High Performance and Cloud computing including a YouTube video with 485,000 hits and over 300 articles in media.
Research into the operational characteristics and applicability of biological reaction networks, carried out at the university in collaboration with groups at Caltech and Sony Systems, revealed the pressing need for a standard format that could be used for storage and exchange of mathematical models of such systems. Hertfordshire researchers played a crucial role in the initial design, dissemination and early exploitation of the Systems Biology Markup Language, SBML, now recognised as the de facto standard format for this purpose. Several major scientific publishers operating across academic boundaries require their authors to use SBML, and 254 software tools, including MATLAB and Mathematica, are now SBML-compliant. Online forums testify to a sizeable, international user-developer community that encompasses engineers, biologists, mathematicians and software developers.
The research work undertaken at Middlesex University on model checking for multi-agent systems has made a significant contribution both to theory and to applications for the verification of complex and critical systems, such as autonomous rovers and avionic scenarios. These scenarios require the verification of properties that go beyond traditional temporal requirements and include epistemic and strategic modalities. Our work has contributed to the development of efficient model checking algorithms and tools that implement state-of-the art features; both the algorithms and the tools have been applied to a number of real-life instances, including scenarios from NASA applications.
This impact case study delivers a sustainable approach to the provision of large-scale Cloud Computing resources, through an international research collaboration. Such a platform enables the widening of participation in Higher Education (HE) across nations, by transforming the provision of IT system resources. The transformation is achieved through the effective sharing and utilisation of flexibly reconfigurable computing resources, whilst reducing the impact upon global carbon emissions. Significantly, the international nature of this research has been recognised by considerable funding from both Chinese and UK agencies. Additionally, the creation of closer research links between international partners has resulted in industrial commercialisation.
The power systems laboratory at the University of Aberdeen has developed new converter topologies that have applications in connecting MW size DC power sources with DC transmission/distribution grids. These converters resolve very challenging questions of fault isolation on high-power DC networks. Scottish Enterprise funded a proof of concept project which developed a prototype, and confirmed the feasibility for various applications with interconnecting renewable power sources. Impact from the research is ongoing. Initial impact has been on public policy and services, where policy debate has been informed by our research evidence; and where decisions, regulations or guidelines have been informed by our research. Impact has also been generated for practitioners and professional services, where both a professional body and a company have used research findings in the conduct of their work, their practices have changed, and new or improved processes have been adopted as a direct result of research findings.
The technology has attracted the attention of George Adamowitsch, European Coordinator for the working group for offshore and onshore grid development. He has described the Aberdeen research in his annual report to EU parliament in 2010, and the lead academic, Professor Dragan Jovcic, now sits on the Working Group for onshore/offshore grid development, developing plans for the European DC supergrid. In addition, this research has contributed to Working Group B4.52 of the International Council on Large Electric Systems (CIGRE), and their major technical brochure "HVDC Grid Feasibility study". Finally, the research has been analysed by the French power company RTE (Réseau de Transport d'Electricité). As a result of the research findings the company has adapted their approach to the planning of major offshore wind farm developments, resulting in a re-definition of the company research and development strategy.