Log in
While basic communications protocols for the Internet were developed decades ago, new requirements such as bandwidth-hungry multimedia and the need for the Internet to reach the "final third" of the population create constant demand for improvements. Research at the University of Aberdeen has greatly contributed to meeting this demand by influencing the standardization and implementation of the Internet Protocol (IP) stack in commercial networks. New standards for Internet Transport Protocols and Satellite IP Transmission resulting from the research have been implemented in industrial products in Europe and the US, benefitting industry and millions of end users.
Lancaster University's pioneering research on Quality-of-Service (QoS) architecture has led to significant impact on the development of TETRA (Terrestrial Trunked Radio) — the digital radio standard used by emergency and public safety services globally. The route to impact was via UK projects on Mobile and Emergency Multimedia. It involved the transfer of QoS technology and know-how to HW Communications Ltd (HWC), a Lancaster-based SME. HWC became instrumental in developing the outcomes of our collaboration in TETRA's Multimedia Exchange Layer (MEX) standard and its specification for TETRA II (or TETRA Enhanced Data Services, TEDS) — a new version of TETRA that enables multimedia data services. MEX was adopted as a new clause in the TETRA II release in 2010. The impact is that vendors of TETRA equipment manufactured after 2010 can implement MEX in their products, thereby leveraging Lancaster's pioneering QoS research to enable applications to obtain the best possible level of service in a standardised way — which is absolutely crucial for the public-safety and related applications for which TETRA is being used.
Our research on cross-layer optimised video distribution over wireless networks has led to wide- reaching economic and societal impact, via the following pathways:
- Standardisation: our research results were directly adopted in WirelessMAN and LTE, the two global standards for the next generation of wireless broadband networks.
- Collaborative research: the work resulted in a product that has been commercialised by our collaborators Rinicom Ltd, an SME specialising in mobile video, and recognised with a Queen's Award for Enterprise (2013), for achievements to which our research contributed significantly.
- User engagement: the work resulted in the deployment of a WiMAX network in Slavutych/Chernobyl, Ukraine; contributing to community regeneration in a UK Government programme to address social and economic consequences of nuclear power plant closure.
This case study provides an account of work on a mathematical framework for the design and optimization of communication networks, and some examples of the framework's influence upon the development of the network congestion control schemes that underlie modern communication networks, notably the Internet.
The impact on protocol development and on network architectures has been significant; in particular on the development of congestion control algorithms and multipath routing algorithms that are stable and fair. Several of the insights on large scale system behaviour have been transferred to help understand cascading failures in other large scale systems, including transport infrastructures.
Mobile technologies and in particular mobile applications have become key drivers of the economy in many countries especially those that lack established communications infrastructures. Since 2003, the research team led by Professor Al-Begain has created both significant infrastructure and know-how that became the base for the creation of the £6.4million Centre of Excellence in Mobile Applications and Services (CEMAS) that is providing research and development to SMEs in Wales to increase their competitiveness. In the first three years since its inception 28 projects have been completed and 66 companies have received services.
Pioneering research at UCL Department of Computer Science (CS) into multimedia communications over the Internet led directly to the development of central techniques used in voice-over-IP (VoIP), videoconferencing, and instant messaging. Millions of people worldwide today use applications that incorporate these techniques. In particular, UCL CS created the Session Initiation Protocol (SIP) and the Session Description Protocol (SDP), two Internet standards that comprise the primary way multimedia calls are established on the Internet. They are at the core of products made by Microsoft, Apple, Cisco, Siemens, and Polycom, among many others, and are used in most 3G mobile telephone networks. Implementing the technology reduces costs for businesses, with Oracle, for example, realising $18 million in savings since 2010.
Pioneering research at Bangor on the advanced communications technology termed Optical Orthogonal Frequency Division Multiplexing (OOFDM) has enabled industrial impact with global implications. OOFDM was a candidate technique for the ITU-T G989.1 NG-PON2 and the IEEE 802.3bm standards and is currently under consideration by the IEEE 802.3 400Gb/s Ethernet Study Group. Supported by 8 patent families and first-phase funding of £1.1M, in 2013, the pre-revenue Bangor University spin-off company Smarterlight Limited, was established. Smarterlight has deployed services to several international telecommunications companies to develop advanced solutions for access optical networks and data centres.
Essex research has investigated a range of switching techniques to enable efficient routing in optical networks. This research informed the development of the iVX8000 system, the world's first `carrier class' converged switch and transport solution, launched in May 2011 by the network equipment manufacturer Intune Networks Ltd. The development, launch and field implementation of the iVX8000 system have underpinned a period of sustained growth and success for Intune. The company has enhanced its position within the photonics transmission sector and attracted €15M of venture capital and collaborative research funding since 2011.
The Tegola Project has undertaken basic research on deploying wireless networking in remote communities, focusing on problems distinct to the Scottish Highlands. The engineering of the Tegola research testbed has had a profound impact on community broadband in Scotland. As a direct result, some of Scotland's most remote communities are now enjoying superfast broadband for the first time. This, together with a novel analysis of broadband infrastructure that underpins the Royal Society of Edinburgh's Digital Scotland report, has substantially influenced government policy in Scotland and changed the focus of the debate across the UK and beyond.
Research by Higham, Estrada and Grindrod into new, computable measures for large, dynamically evolving communication networks has allowed the automatic identification of individuals who act as influencers, or efficient listeners. This research insight has been taken up by Bloom Agency (Leeds), a digital marketing and media agency. Bloom has used these ideas to strengthen their Data Insights Team, leading to investment in new jobs, generation of new business and delivery of better results for their clients. Bloom's commercially available real time social planning software product, Whisper, builds directly on the published research, and is at the heart of the agency's success in doubling staff numbers to 60 in recent months, having grown its annual income by 50% to £2.4Million through the use of these new tools.