Log in
The Institute of Cancer Research (ICR) founded the spin out company Domainex in 2002 in collaboration with UCL and Birkbeck. The company was set up on the basis of novel research into the expression of soluble protein domains to provide services to a range of bioscience-based companies. Within the period 2008-2013, Domainex has established profitability and positioned itself as a successful company employing over 30 scientists at its laboratories in Cambridge. It has established programmes and contracts with over 20 international clients in medicinal chemistry, drug discovery, monoclonal antibody development and agrochemical science, making a major commercial impact in all these fields.
Protein modification represents a highly significant and growing source of new products for the biopharmaceuticals market. This case study outlines the development of PolyTherics, a highly successful spin-out company from the UCL School of Pharmacy, and the impact that their enabling technology has had on the pharmaceutical and biotechnology industries. The company was developed as a direct result of new conjugate technology developed by Professor Steve Brocchini and coworkers at the School. The company moved to independent premises in 2006 and now manages a portfolio of over 100 granted and pending patents. Several licensing agreements are in place, including with Celtic Pharma Holdings for haemophilia treatments and Nuron for a multiple sclerosis treatment based on PEGylation conjugation technology. Revenue is expected to be £8m in 2013. The impact of Polytherics is therefore as a significant and effective technology provider to the pharmaceutical and biotechnology industries.
Professors Zhelev (UoA5) and Bradley (UoA15) explored the scope and demonstrated the feasibility of using light-scattering methods for quantitative analysis of macromolecular associations and aggregation, including protein-protein and protein-DNA interactions. 16 years of design and development research was translated into a marketed product — the PAM™Zero — a novel hand-held, low-cost protein aggregation monitor capable of detecting macromolecule aggregation in microliter sample volumes. Manufactured and sold through a spinout company, Norton Scientific Inc. (established in 2010 and valued at $7M), this portable instrument is used in commercial Quality Control and academic research and has been sold to a range of stakeholders e.g. drug development companies, for food safety and water pollution monitoring.
Serum amyloid P, or pentraxin-2, is a pentameric calcium-binding protein that binds to amyloid fibrils. It has been implicated in the protection of those fibrils from proteolytic digestion and in the immune response to tissue damage. The structure of pentraxin-2 was first solved by Steve Wood and his co-workers in Tom Blundell's lab at Birkbeck in the 1990s. Wood has continued his work on the pentraxins at UCL, and the company Pentraxin Therapeutics Ltd was spun out of UCL to design and develop pentraxin-binding ligands (based on its structure) as potential treatments for Alzheimer's disease and amyloidosis. Promedior Inc. in the US is developing recombinant forms of pentraxin to control fibrosis. Several of these molecules are now in clinical trials.
A computer technology has been invented to accelerate drug discovery. It predicts locations in disease-associated biomolecules where drug molecules could bind, induce shape changes, and thereby bring the activity of the biomolecule under control. A U.S. drug discovery company, Serometrix, has exclusively licensed this technology and incorporated it within their core discovery process. The impact upon them has been:
Research in protein folding and technological development at the University of Leeds led to the creation of Optim1000, a high throughput microlitre protein stability analyser, through Leeds spin-off company Avacta. Used in the early stages of R&D in the biopharma industry, Optim1000 evaluates the stability and homogeneity of complex biological drugs, using just micrograms of protein sample. This screening reduces the costly development and late-stage failure of unsuitable candidate therapeutics. The platform has been sold to a wide range of global biopharma companies; it is reported to reduce drug stability screening by months. This provides economic impact through saving the industry millions of dollars in R&D costs, along with health impact by speeding up the emergence of new products. Avacta reported revenue of over £3 million in 2012 and employs 70 staff.
The Fuller Longer™ (FL) food range was developed by Marks & Spencer (M&S) with expertise from the University of Aberdeen Rowett Institute of Nutrition and Health. Product development was based on Rowett research into the efficacy of high protein and mixed carbohydrate diets for sustained appetite control and weight loss. Obesity is a major public health challenge; therefore it is not surprising that FL has become an established brand for M&S's 20 million customers. This industry-academia partnership to develop a food range based on scientific input, was a first for M&S, and has led to one of the UK's most popular retail healthy-eating food ranges.
Therefore the claimed impact here includes benefits to health and welfare, on commerce, business performance and the economy.
Kinases, the enzymes that catalyse phosphorylation events, have been implicated in hundreds of different diseases, and hold rich promise for drug development. In 1998, The University of Dundee developed the first systematic assay to analyse the selectivity of protein kinase inhibitors, termed `kinase profiling'. This technology has been crucial for the development of new therapeutic drugs targeting protein kinases. In order to promote drug discovery in the area of kinases, the Division of Signal Transduction Therapy (DSTT) was formed and provides a unique collaboration between the University and six of the world's leading pharmaceutical companies.
Essex research identified a novel bioprocessing matrix which has since been developed into commercial products and recently launched into external markets by Porvair Filtration Group Ltd. The discovery involved the chemical modification of sintered thermoplastic materials in order to attach biological molecules, so conferring highly specific functionalised properties to an otherwise inert base material. This enabled a new approach for protein immobilisation, having technical and practical advantages over existing processes. As a direct result, Porvair has adopted a new technology and invested £900k in R&D over eight years. Essex research has supported a change in business strategy, enabling entry into new markets, which has in turn both safeguarded and created jobs at Porvair.
Protein reagent production techniques developed at QUB, were transferred to UK-based biotechnology company, Fusion Antibodies Ltd, to increase their competitiveness in the production of diagnostic and therapeutic reagents. These techniques were commercialised by the company as the Fusion Expression TechnologyTM (FET) platform technology, to deliver contract research orders. The transfer of this technology allowed Fusion to accelerate its completion of orders and secure higher value projects. This increased competitiveness led to the tripling its technical workforce (at graduate and doctoral levels), securing new orders from over 15 countries and producing on average £300K per annum (from 2008 onwards) in revenue.