Similar case studies

REF impact found 11 Case Studies

Currently displayed text from case study:

5. Predicting the impact of faults on fluid flow in hydrocarbon reservoirs

Summary of the impact

Research on faults and fluid flow led by the University of Leeds has dramatically increased the ability of the petroleum industry to predict the impact of faults on fluid flow in petroleum reservoirs. The work has allowed the industry to reduce the risks associated with the exploration of fault- bounded reservoirs, and to identify areas of un-drained reserves in producing reservoirs. The research has won a series of important industrial and academic awards, and has provided a platform for the growth of Rock Deformation Research, a successful consultancy spin-out company whose turnover rose from £1.93 million in the period 2008-2010 to £4.0 million today.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geology, Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

Electrokinetic geosynthetics (EKG): revolutionising industry practice in infrastructure management and environmental impact reduction

Summary of the impact

The EKG technology developed by Newcastle has launched an entirely new spectrum of applications for geosynthetic materials and has resulted in changing established practice in civil, construction and mining engineering. The commercialisation of the technology, linking industry to applications of EKG products and processes, has been driven by the spin-out company Electrokinetic Limited. Amey, a leading international infrastructure services provider, incorporated the EKG technology into £1M projects for Network Rail and the Highways Agency in 2011-12. The end results were a 30% cost saving and 40% reduction in CO2 compared to established methods. The new range of EKG products has been recognised by British Standards, leading to the revision of BS 8006 for reinforced soil in 2010.

Submitting Institution

Newcastle University

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Environmental Engineering

Reservoirs Under Stress: Improved productivity through geomechanics and microseismicity in petroleum systems

Summary of the impact

Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Commercialisation of Research into High Pressure Geological Reservoirs

Summary of the impact

Failure to predict and control geological overpressures during drilling can lead to operational delays costing millions of pounds, or to blow-outs causing serious environmental damage and costs running into billions. Using methodologies, knowledge and data analysis techniques developed at Durham, a spin-out, GeoPressure Technology (GPT; now Ikon Geopressure) (20 employees, revenues 2008-13: £10.8 million) has become a niche supplier to the global oil industry of expertise, training and software ("PressureView") that predicts and assess the causes of overpressure. GPT consultancy has had particular impacts for companies drilling in the North Sea, offshore Canada, Norway and West Africa where overpressure represents a significant technical challenge.

Submitting Institution

University of Durham

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

2) Sand Injectites

Summary of the impact

Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.

Submitting Institution

University of Aberdeen

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

8. Fast petro-physical analysis of unconventional gas reservoirs to assist in improving drilling strategies.

Summary of the impact

Research performed at the University of Leeds allows the petroleum industry to reduce radically the amount of time that taken to estimate the key properties of tight sandstones containing natural gas. These properties largely determine whether gas fields are economically viable. Tests used in the past have taken between six months and two years to complete; with the Leeds research, results can now be obtained in less than one day — a radical improvement. Industry has used the results to justify drilling new prospects and to improve understanding of the controls on gas and water production in existing fields, which has shaped appraisal and production strategies.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

6. Peering into the pore space: digital rock physics to improve oilfield management

Summary of the impact

Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

7. Sedimentology research steers high-value decisions in the hydrocarbon industry

Summary of the impact

University of Leeds Research has been used by its specialist Turbidites Research Group (TRG) to underpin consultancy work for oil companies that has, in turn, steered them to make high-value decisions. Examples include an oil well placement, the development of an oil field, and a decision to only partially develop another. The TRG has been funded by 14 oil companies since 1992, and its annual income has risen from £125k/yr prior to 2008 to £380k/yr during the REF period. It is estimated that the cumulative value of oil company decisions based on TRG research exceeds several hundred million dollars. Following the impact, Leeds have replicated the TRG business model to form new specialist industrial research groups that have each generated further impact.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

Improved geological models aiding hydrocarbon reservoir development

Summary of the impact

UCL's Deep-Water Research Group (DWRG) creates knowledge transfer between research and the hydrocarbon industry. Oil companies use the DWRG's research results to generate improved in-house computer-generated hydrocarbon reservoir models, allowing them to manage, develop and value their reservoirs better. The same companies also use the research to run training courses for employees, including reservoir engineers and managers, leading to improved understanding and more informed decision-making about the management of hydrocarbon reservoirs. Improved management and development of reservoirs ultimately leads to oil companies being able to extract a greater amount of oil.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology, Geophysics

9. Putting pressure information into sharp focus: the use of deconvolution to boost oilfield reserves

Summary of the impact

Like using glasses to improve eyesight, or the corrective lens of the Hubble telescope, the development of a stable deconvolution algorithm for oil well pressure data has increased the amount of information that can be extracted from well test analyses. The method specifically allows the volume of the reservoir connected to the well to be determined. Several oil and gas companies attest to an increase in their estimates of reserves by more than 20% using deconvolution, with one company indicating a doubling of reserves. The research has led to better design of recovery, better financial planning and more informed investment decisions in the oil and gas industry.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Resources Engineering and Extractive Metallurgy

Filter Impact Case Studies

Download Impact Case Studies