Similar case studies

REF impact found 20 Case Studies

Currently displayed text from case study:

10 - Maximising Oil Recovery with Low Salinity Water Flooding

Summary of the impact

The data generated from research undertaken by ERPE has enabled BP to leverage an investment of $125M for full field implementation of Lo-Sal® EOR technology in the Clair Ridge Field, west of Shetland.

This research has provided BP with a step change in understanding of how to maximise oil recovery and production. Low Salinity Water Flooding has been shown to increase oil recovery by an average of ~16% when compared to standard "High Salinity" water flooding. Based on this work, BP made a strategic decision in September 2012 to use Low Salinity Water Flooding as their default position for field development, by adopting this significant development in water-flooding technology.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology

1) Exploring new Frontiers: Atlantic Oil and Gas Reserves

Summary of the impact

Research by the University of Aberdeen's research group on Stratigraphic Evolution of large Igneous Provinces (StratLIP) has guided the successful development of new oil-producing fields in the North East Atlantic that were previously not in production, aided by an improved understanding of the geological context within which the reserves were discovered. The research has informed every phase of exploration and development by several of the UK's leading energy companies, in one project saving the partners £600m and proving the financial viability of a major oilfield development deemed important to the UK's oil supply. The findings have contributed to an increase in the UK's energy security and the strength of the UK's oil and gas industry, especially in the context of the local economy of Aberdeen, the energy capital of Europe.

Submitting Institution

University of Aberdeen

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geology, Oceanography
Engineering: Resources Engineering and Extractive Metallurgy

Enhanced Oil Recovery

Summary of the impact

Thermally sensitive polymers are injected into oil reservoirs to increase the recovery of oil. Experimental and theoretical modeling carried out at the BP Institute, University of Cambridge, has led to a new understanding of the behaviour of such polymers and increased their effectiveness in recovering oil, through improved design of the injection, and led to the discovery of a new reservoir monitoring technique to detect their effect on production. Optimising injection of polymer increases well production by over 1000 bbl/day and has generated annual revenues of over $US 300 million. This technology is also being applied to thermal energy storage systems.

Submitting Institution

University of Cambridge

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

6. Peering into the pore space: digital rock physics to improve oilfield management

Summary of the impact

Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy

2) Sand Injectites

Summary of the impact

Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.

Submitting Institution

University of Aberdeen

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

Improved geological models aiding hydrocarbon reservoir development

Summary of the impact

UCL's Deep-Water Research Group (DWRG) creates knowledge transfer between research and the hydrocarbon industry. Oil companies use the DWRG's research results to generate improved in-house computer-generated hydrocarbon reservoir models, allowing them to manage, develop and value their reservoirs better. The same companies also use the research to run training courses for employees, including reservoir engineers and managers, leading to improved understanding and more informed decision-making about the management of hydrocarbon reservoirs. Improved management and development of reservoirs ultimately leads to oil companies being able to extract a greater amount of oil.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology, Geophysics

Development of Novel Tamponade Agents has Improved the Treatment of Retinal Detachment

Summary of the impact

The University of Liverpool (UoL) has developed novel tamponade agents used to treat retinal detachments. They are modified silicone oils that have an increased extensional viscosity. This makes it easier to inject into the eye by the vitreoretinal surgeons and, experimentally, they have an increased emulsification resistance. This technology has been licenced to Fluoron GmbH who manufacture these products under the name Siluron® 2000 and Siluron® Xtra. Siluron® 2000 has been on the market worldwide since 2008 and used to treat patients providing an impact to health by enhancing the clinical outcome for retinal detachment patients. Siluron® Xtra was launched in July 2013.

Submitting Institutions

University of Liverpool,Liverpool School of Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Ophthalmology and Optometry

New Silicon Oils for use in the Treatment of Retinal Detachment

Summary of the impact

The University of Liverpool (UoL) has developed novel tamponade agents that are used to treat retinal detachments. These tamponades are modified silicone oils that have an increased extensional viscosity. This makes it easier for vitreoretinal surgeons to inject them into the eye and, experimentally, they have an increased emulsification resistance. The technology has been licenced to Fluoron GmbH, who manufacture these products under the name Siluron® 2000 and Siluron® Xtra. Siluron® 2000 has been on the market worldwide since 2008 and is used to treat retinal detachment patients, providing an impact to health by enhancing their clinical outcomes. Siluron® Xtra was launched in July 2013.

Submitting Institution

University of Liverpool

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Ophthalmology and Optometry

7. Sedimentology research steers high-value decisions in the hydrocarbon industry

Summary of the impact

University of Leeds Research has been used by its specialist Turbidites Research Group (TRG) to underpin consultancy work for oil companies that has, in turn, steered them to make high-value decisions. Examples include an oil well placement, the development of an oil field, and a decision to only partially develop another. The TRG has been funded by 14 oil companies since 1992, and its annual income has risen from £125k/yr prior to 2008 to £380k/yr during the REF period. It is estimated that the cumulative value of oil company decisions based on TRG research exceeds several hundred million dollars. Following the impact, Leeds have replicated the TRG business model to form new specialist industrial research groups that have each generated further impact.

Submitting Institution

University of Leeds

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Earth Sciences: Geochemistry, Geology
Engineering: Resources Engineering and Extractive Metallurgy

Reservoirs Under Stress: Improved productivity through geomechanics and microseismicity in petroleum systems

Summary of the impact

Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.

Submitting Institution

University of Bristol

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Economic

Research Subject Area(s)

Earth Sciences: Geophysics
Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies