Similar case studies

REF impact found 54 Case Studies

Currently displayed text from case study:

UOA05-17: Everest Biotech Ltd: providing high quality reagents for research

Summary of the impact

Professor Neil Barclay and Dr Nick Hutchings established Everest Biotech Ltd in 2000 in response to the increasing demand for high quality antibodies within the research community. This successful spin-out company has since become a major power in antibody research and production, a position reflected by its portfolio of more than 6,000 antibodies recognising human, mouse and rat proteins, and the generation of 60 new antibodies each month. With offices in the UK and Nepal, Everest Biotech Ltd also benefits one of the poorest communities in the world by providing additional income to hundreds of farmers in the Nepalese foothills.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Pharmacology and Pharmaceutical Sciences

Improved efficiency for derivation of mouse embryonic stem cells: reducing use of animals and saving costs in life sciences

Summary of the impact

Mouse disease models provide an invaluable tool to the medical sciences, underpinning the understanding of disease mechanisms and the development of therapeutic interventions. A new cultivation protocol for deriving mouse embryonic stem (ES) cells was developed by Dr Nichols between 2006 and 2009. This has facilitated the production of ES cells from disease model mice that can be manipulated in vitro and used to establish modified transgenic mice with the required genetic profile, in a single generation. This method reduces the number of mice needed, as well as associated costs and staff time, by 90%. Dr Nichols has trained industry delegates from international transgenics companies and transgenic facility managers in the new technology. As a consequence, a minimum of 26820 fewer mice have been used in experiments, and a minimum of £536k have been saved since 2009.

Submitting Institution

University of Cambridge

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Technology: Medical Biotechnology

The improvement of recombinant protein production using the yeast Saccharomyces cerevisiae

Summary of the impact

This case study describes the impact of the discovery by Tuite and Freedman that elevating the levels of the enzyme protein disulphide isomerase (PDI) significantly increases the efficiency with which eukaryotic cells secrete disulphide-bonded proteins. This discovery led to the development of a patented, generic technology for improving both the yield and authenticity of high value, recombinant protein-based biopharmaceuticals. The patent has been used in the safe, animal free production of several FDA and EMEA approved biopharmaceuticals (e.g. recombinant human albumin; Recombumin®), generating multi-million dollar revenues. It has been sub-licensed to four major pharmaceutical companies (Novozymes, Pfizer, Glaxo, Repligen) to aid the safe production of biopharmaceuticals for a range of major human diseases (e.g. Type 2 diabetes).

Submitting Institution

University of Kent

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Biopharmaceutical characterisation, production and development

Summary of the impact

Research by Smales has led to IP that protects novel technologies for mammalian recombinant cell line development. Based upon mass spectrometry and in silico modelling approaches, the technology has permitted the development of highly efficient cell lines for monoclonal antibody production in the commercial environment at Lonza Biologics. This IP has three important benefits to the pharmaceutical and biotechnology industries:

(a) It allows key biopharmaceuticals to be made using substantially less resource and with an overall higher efficiency.

(b) It reduces the time from transfection to production of cell banks.

(c) It accelerates bioreactor evaluation and the ability to predict cell line performance at the bioreactor scale early in cell line construction.

Submitting Institution

University of Kent

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Chemical Engineering
Medical and Health Sciences: Neurosciences

06_A portfolio of stem cell culture products is sold worldwide.

Summary of the impact

Impact on commerce: Five stem cell culture products derived from UoE research have been brought to a global market since 2009 through the US based company StemCells Inc. StemCells Inc strategically acquired Stem Cell Sciences plc (SCS), with its licensed portfolio of UoE patents, to position themselves as a world leader in cell-based medicine. This enabled them to develop media and reagent tools in order to pursue nearer-term commercial opportunities. These products include the gold standard media for embryonic stem cell culture, iSTEM.

Beneficiaries: Commercial companies and users of the stem cell culture products.

Significance and Reach: iSTEM is the gold standard media used worldwide by researchers for maintaining mouse ES cells in their basal, non-differentiated state. Products are sold worldwide through global life sciences companies.

Attribution: All research was carried out at UoE between 1994 and 2006 (published up to 2008), led by Prof Austin Smith. Collaboration with Prof Philip Cohen, University of Dundee, on one paper (2008).

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics

Therapeutic application of skeletal stem cells for patient benefit

Summary of the impact

Seven patients with avascular necrosis of the femoral head and bone cysts have been treated successfully with skeletal stem cell therapy, developed by Southampton researchers, resulting in an improved quality of life. This unique multi-disciplinary approach linking nano-bioengineering and stem cell research could revolutionise treatment for the 4,000 patients requiring surgery each year in the UK and reduce a huge financial burden on the NHS. The work has been granted three patents and the team are in discussions on development of the next generation of orthopaedic implants with industry.

Submitting Institution

University of Southampton

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Engineering: Biomedical Engineering
Medical and Health Sciences: Clinical Sciences

UOA05-05: Glycobiology platforms: enabling technologies for the biopharmaceutical industry

Summary of the impact

Research at the University of Oxford's Glycobiology Institute (OGBI) has led to the development of `state-of-the-art' platform technologies for the analysis of oligosaccharides (sugars) that are linked to proteins and lipids. These enabling technologies have had major impacts worldwide on drug discovery programmes, have enabled robust procedures to be developed for the quality control of biopharmaceutical production, and have been widely adopted by the pharmaceutical industry.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology

11_Plant stem cell culture is used for the manufacture of biological products.

Summary of the impact

Impact on the economy and on commerce Using novel technology developed with UoE researchers to isolate and culture cambial meristematic cells (CMCs), Korean biotech company Unhwa Corp tripled their production of CMCs and have brought sixteen skincare products and three nutritional products to a global market. The impact of this technology on the South Korean economy has been recognised by the Korea Ministry of Knowledge Economy.

Beneficiaries: Korean Biotech company Unhwa Corp, and international consumers of their nutrition and cosmetic products.

Significance and Reach: The technology provides a platform for the cost-effective, environ- mentally friendly and sustainable production of plant stem cells. The business strategy and operations of Unhwa Corp changed as a direct result of the research: Unhwa invested [text removed for publication] in 2011-13 to construct a base in Jeojuni, Korea for a new production facility. Products arising from this are sold world-wide (Unhwa has subsidiaries on 5 continents) and have generated [text removed for publication] profit, with a doubling of company turnover since the key research was carried out.

Attribution: Professor Gary Loake, UoE, led the research in collaboration with Unhwa Corp, from 2006 to 2010 and ongoing.

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Technology: Medical Biotechnology

Development of conditionally immortalised cell lines as novel cell models of disease and for cell transplantation

Summary of the impact

Research by Professor Parmjit Jat (first at the Ludwig Institute for Cancer Research, then part of UCL; later at the UCL Institute of Neurology) established and applied the critically important scientific concept of conditional immortalisation to a wide variety of cell lines, enabling cells to be grown indefinitely in vitro but differentiate upon altering the growth conditions. Two companies were established in partnership with Jat to exploit this research, ReNeuron (now worth £63.5m and publicly traded on the London AIM market) and XCellSyz (now part of Lonza AG). More than 20 patents based on Professor Jat's work have been issued. Reagents based on his research have been evaluated, licensed and used by 17 companies worldwide: Amgen, Amylin, Boehringer Mannheim, Cell Genesys, Chiron, Eli Lilly, Genentech Inc., Genetics Institute, Immunex, Johnson & Johnson, Medarex, Novartis, Ortho Pharm., Pfizer Inc., Regeneron, ReNeuron, Takeda, EMD Serono, and XCellSyZ/Cambrex Bioscience/Lonza.

Submitting Institution

University College London

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Oncology and Carcinogenesis

05_Patients’, policy-makers’, educators’ and the public’s understanding of stem cell research is increased through in-depth engagement.

Summary of the impact

Impact on society, culture and creativity; health and welfare; practitioners: Extensive public engagement with a broad target audience has increased understanding of the hopes and hypes generated by stem cell research at UoE and elsewhere, and has provided resources for practitioners to deliver high-quality public engagement and science education.

Beneficiaries: Educators, teacher trainers, science communicators, journalists; patients; students; officials in the European Commission, the European Parliament and by extension constituents.

Significance and Reach: This programme has promoted informed decision-making among non-specialists and public acceptance of stem cell-based research and future therapies in Europe (compared for instance to the USA). The project is focused on Europe, but participation is world-wide. 767,000 unique visitors have accessed the www.eurostemcell.org website. The educational tools have been used by 11,000 pupils, and engaged 20,100 participants at festivals and science centres. More than 740,000 individuals world-wide have viewed the films (>240,000 confirmed online, film showings and DVD; estimated >500,000 TV audience).

Attribution: The programme reflects a range of stem cell research, substantially based on underpinning research carried out at UoE led by Professors Austin Smith and Ian Chambers. The outreach programme is led by Professor Clare Blackburn. Leadership, management, content identification, content format, editorial input, and evaluation of the outreach programme are all led at the University of Edinburgh.

Submitting Institution

University of Edinburgh

Unit of Assessment

Biological Sciences

Summary Impact Type

Societal

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Filter Impact Case Studies

Download Impact Case Studies