Similar case studies

REF impact found 40 Case Studies

Currently displayed text from case study:

Therapeutic Developments for Sphingolipidoses-Cox

Summary of the impact

Research conducted by Professor TM Cox has led to several advances in the management of lysosomal storage disorders; i) development of miglustat (Zavesca®); now available throughout the world (EMA and FDA approved) for adult patients with Gaucher's disease and throughout the European Union and five other countries worldwide for adult and pediatric patients with Niemann- Pick type C disease, ii) development of the potential successor eliglustat; now in Phase 3 clinical trials, iii) identification of a biomarker for Gaucher's: CCL18/PARC, now incorporated into NHS standard operating procedures for monitoring therapeutic intervention. His pre-clinical research into gene therapy for Tay-Sachs disease also helped establish the NIH-funded Gene Therapy Consortium and gain the FDA's pre-IND approval for clinical trials in 2013, which together have raised public awareness of this disease.

Submitting Institution

University of Cambridge

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Technology: Medical Biotechnology
Medical and Health Sciences: Clinical Sciences

Uncovering the genetic basis of atypical haemolytic uraemic syndrome leads to improved treatment.

Summary of the impact

Research conducted by Professor Tim Goodship and co-workers at Newcastle has had a profound effect on the prognosis for patients with atypical haemolytic uraemic syndrome (aHUS). By engaging in research on the genetic factors underlying the disease they developed an understanding of the molecular mechanisms responsible. Identifying that the majority of patients with aHUS have either acquired or inherited abnormalities of the regulation of complement (part of the immune system) led to the establishment of a UK national service for genetic screening and treatment with the complement inhibitor eculizumab. As eculizumab is now available to patients in England, the progression to end-stage renal failure can be prevented and patients already on dialysis will soon be successfully transplanted.

Submitting Institution

Newcastle University

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences

Molecular genetic characterisation of human and animal disorders leading to improved diagnosis, prevention and treatment of inherited disorders

Summary of the impact

Research at the UCL School of Pharmacy has positively influenced healthcare in startle disease/hyperekplexia, a rare disease that affects humans and several animal species, including dogs, horses and cattle. The identification and functional characterisation of mutations in genes involved in human startle disease by researchers at the School has improved genetic diagnostics and patient care. Our research on startle disease in cattle and dogs has also led to new non- invasive diagnostic tests that have alleviated animal suffering and reduced negative economic impacts on farmers. Overall, our findings have been translated into tangible benefits for the human and animal populations affected by this disease and have changed the way in which the disease is diagnosed and treated. We have also significantly increased the awareness of this rare disorder by communicating with academics, healthcare and veterinary professionals, and the general public.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Curing chronic granulomatous disease in children through early bone marrow transplant

Summary of the impact

Chronic granulomatous disease is a rare but very serious inherited disorder of the immune system that leaves sufferers vulnerable to potentially fatal bacterial and fungal infections. Researchers at Newcastle University demonstrated very high survival and cure rates following bone marrow transplantation for the disease and good quality of life for successfully transplanted patients. This led to a change in national clinical policy, and doctors at both specialist disease centres in the UK now recommend transplantation to families where previously they would not have done so. In the five years prior to 2008 there were only 11 transplants for chronic granulomatous disease in the UK and in the following five years, 36 transplants. 32 children are alive and cured of the disease.

Submitting Institution

Newcastle University

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences, Immunology

Hereditary autoinflammatory disease programme: from endogenous pyrogen to the NHS cryopryin associated periodic syndrome (CAPS) Treatment Service at UCL, Royal Free Hospital.

Summary of the impact

The UCL Centre for Amyloidosis and Acute Phase Proteins has identified the cause and treatment for the prototypical cryopryin associated periodic syndrome (CAPS), and subsequently for a range of other hereditary and acquired autoinflammatory disorders. As a result of the research, canakinumab was licensed for this condition. In recognition, NHS Specialised Services commissioned the UK CAPS Treatment Service in 2010 to deliver life-changing IL-1 blocking therapy to the national caseload of CAPS patients at UCL.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Immunology, Neurosciences

Improving diagnosis and clinical care for rare inherited diabetes syndromes

Summary of the impact

Although individually infrequent, rare diseases collectively are a major health burden, particularly for individuals who suffer with conditions that are not routinely diagnosed or have no effective care pathways. Through the work of Professor Tim Barrett, the University of Birmingham is internationally recognised for translational research in rare inherited diabetes and obesity syndromes. This has had major impacts on patient care through gene identification for devastating multi-system syndromes; development of a unique international diagnostic testing service combining molecular testing with international clinical expertise; European reference centre status for three NHS highly specialised multidisciplinary services; and leadership of the European Registry for rare diabetes syndromes. Our national and international leadership for these previously poorly-served conditions has enabled sharing of best clinical practice, including development of clinics for Wolfram syndrome across the world.

Submitting Institution

University of Birmingham

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Inherited retinal disease: genetic testing and a new era of therapy

Summary of the impact

Research at the UCL Institute of Ophthalmology over the last 20 years has resulted in the identification of a large number of novel genes that cause inherited retinal disease. These genes have been incorporated into diagnostic tests, which have allowed molecular diagnosis, improved genetic counselling including pre-natal/pre-implantation diagnosis, better information about prognosis and have informed decisions about which diseases should be prioritised for clinical trials of novel treatments. The identification of these genes has greatly improved understanding of disease mechanisms, an essential prerequisite for developing new treatment approaches such as gene therapy.

Submitting Institution

University College London

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Neurosciences, Ophthalmology and Optometry

UOA01-14: Defining Craniofacial Disorders for Improved Clinical Management

Summary of the impact

As a result of research from Oxford's Professor Andrew Wilkie, accurate genetic diagnostic tests are now available for over 23% of all craniosynostosis cases nationally and internationally, leading to improved family planning and clinical management of this common condition worldwide. The premature fusion of cranial sutures, known as craniosynostosis, is a common developmental abnormality that occurs in 1 in 2,500 births. Over the past 20 years, the University of Oxford's Clinical Genetics Lab, led by Professor Wilkie in collaboration with the Oxford Craniofacial Unit, has identified more than half of the known genetic mutations that cause craniosynostosis and other malformations of the skull.

Submitting Institution

University of Oxford

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Neurosciences

Translating Genetic Insights into Improved Clinical Diagnosis and Therapy of Severe Insulin Resistance - O'Rahilly

Summary of the impact

Long-standing research led by Prof. O'Rahilly (Department of Clinical Biochemistry) into the genetic and biochemical basis of severe insulin resistance syndromes, has led to improvements in diagnosis and care of patients internationally. These advances have facilitated revision of existing clinical classifications and implementation of novel diagnostic and management algorithms for these conditions. The clinical applicability of this research was recognised in 2011 by the Department of Health-England who have commissioned a national severe insulin resistance service in Cambridge, with support totalling ~£450,000 per annum.

Submitting Institution

University of Cambridge

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences

UOA05-04: Miglustat: the first oral treatment for rare but devastating lysosomal storage disorders

Summary of the impact

Professor Platt and colleagues at the University of Oxford have developed the drug miglustat, the first oral therapy for rare lysosomal storage diseases. These are primarily neurodegenerative diseases that affect 1 in 5,000 live births, always leading to premature death. In 2009, miglustat became the first treatment to be licensed for treating neurological manifestations in Niemann-Pick disease type C (NPC). It is now prescribed for the majority of NPC patients worldwide, and has led to significant improvements in both life expectancy and quality of life. Miglustat was approved for type 1 Gaucher disease in 2002 and, since 2008, has proved an effective treatment for patients previously stabilised with enzyme replacement therapy; miglustat has the additional benefit of improving bone disease. Sales of miglustat since 2008 have generated CHF 315 million in revenues for Actelion, the company sublicensed to sell the drug.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Technology: Medical Biotechnology
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology

Filter Impact Case Studies

Download Impact Case Studies