Log in
The work of Colledge and colleagues between 2000 and 2007 has identified and characterised a molecule which is an important regulator of fertility: the neuropeptide kisspeptin.
The identification of its role in fertility has led to kisspeptin and its analogues being tested in clinical trials to make IVF treatment safer (Phase II: one trial), and as therapeutic agents for reproductive system conditions such as delayed puberty, menopause and absence of menstruation (Phase I: four trials). In April 2013, 11 months after the start of the Phase II IVF study, a healthy baby has been born to a participant treated with kisspeptin. Patients enrolled in these fertility trials have testified to the improvement in quality of life which the hope of being able to conceive that this alternative to conventional IVF has brought them.
Original basic research on melatonin receptors undertaken at the Rowett Institute, University of Aberdeen, and funded by the Scottish Government, provided the opportunity for Servier pharmaceuticals to develop a new line of therapeutics for depression.
The company exploited Rowett know-how and invested in new research to develop a new line of compounds and to understand their structure-function relationships. This work enabled the development of melatonin analogues for clinical trials and ultimately led to the development of melatonin compounds for treatment of circadian related disorders.
One (S20098) was identified as having positive effects for disrupted circadian rhythms and beneficial outcomes for patients with depression. S20098 (also known as Agomelatine) was launched after EU authorization in 2009 as a novel anti-depressant drug called Valdoxan®. Today Valdoxan is an award winning anti-depressant drug recognised for its novel mechanism of action and few side effects. Valdoxan is the only anti-depressant drug to be brought to the market in the last 10 years. In summary, supported by investment from industry research undertaken at the University of Aberdeen contributed to the development of a novel antidepressant drug that provides a new clinical intervention with advantages over previously available antidepressants that will make a significant impact on the health and well-being of those afflicted by depression.
Many clinically-useful natural products fall into the class of polyketides. From 1993, research led by Professors Leadlay (Biochemistry) and Staunton (Chemistry) on polyketide biosynthesis pathways led to the foundation of the spin-out company Biotica Technology Ltd in 1996. Between 2008 and 2013 the company provided continuous employment for on average 15-20 highly-skilled scientists, and attracted additional investments of £4.43M. Its follow-on company Isomerase Therapeutics Ltd, founded by ex-Biotica researchers with Leadlay's support in 2013, has acquired compounds, strains and IP from Biotica. Using the methods developed in the University by Leadlay and Staunton, Biotica developed a HepC antiviral therapy, sold in 2013 to NeuroVive Pharmaceuticals AB and currently entering pre-clinical toxicology tests. Biotica have also licensed their technology to a number of companies globally, including GSK and Amyris.
Fluorescent ligand technologies developed by Professor Hill and Dr Briddon in the Pharmacology research group, in collaboration with Professor Kellam in the School of Pharmacy, permitted biophysical analysis of G-protein coupled receptors (GPCRs) at the individual cell and molecule level for the first time. The technologies have been commercialised through the spin-out business, CellAura Technologies (and their distributors Abcam, Sigma-Aldrich and others), generating revenues and making the products available to researchers and drug discovery communities worldwide. Custom product developments with global pharmaceutical companies and drug screening reagent providers have generated further partnership revenues and technology benefits. Nottingham-trained researchers are now employed worldwide, broadening the technology's impacts.
Research conducted at the University of Bristol since the late 1990s has pioneered the development of over 60 chemical probes that are selective for individual ionotropic and metabotropic glutamate receptors. The development of these probes has led to numerous commercial impacts, including: the establishment of two companies, which both sold during the assessment period for a combined value of £85 million, and sales revenue for global providers of biochemicals. This research has also stimulated considerable industry investment in drug development.
Research by the School of Pharmacy has underpinned the development of fluorescent ligand probes that have opened-up new pathways in drug discovery. These ligands have been commercialised through the formation of the spin-out company CellAura Technologies Ltd, and have been made globally available through a number of distributer agreements. Customers include pharmaceutical companies (e.g. Pfizer, AstraZeneca), drug discovery biotechs (e.g. Addex, Heptares) and drug discovery technology providers (e.g. CisBio). These ligands provide alternatives to the use of radio-ligands, giving more informative and safer solutions for industrial drug discovery. This has, for example, enabled: a new direction in G protein-coupled receptor research at Novartis Pharmaceuticals UK Ltd; validation of Promega Corporation's new drug-binding assay; and superior performance in the establishment of cell lines at inSCREENex GmbH.
Members of the Pharmacology Research Group identified hitherto unknown properties of G protein Coupled Receptors (GPCRs): that ligands can signal differentially through both G-protein-coupled and β-arrestin pathways. This led to the concept of GPCR `biased signalling' and development of fluorescent reporters to quantify β-arrestin signalling. These discoveries have been adopted widely by the pharmaceutical industry, attracting R&D investment and collaborative research funding, to drive discovery of new drugs operating through `biased signalling'. The commercial opportunity has also been exploited by screening reagent providers and contract screening organisations. These discoveries will ultimately produce better drugs to treat GPCR-based diseases to improve human health.
Professor Geoffrey Burnstock and colleagues' establishment of the molecular structure of the P2Y class of receptor led to the cloning of several receptors within this class, which are increasingly seen as therapeutic targets for a variety of disorders. Indeed, drugs acting at these receptors are already improving patient health worldwide by reducing the risk of thrombotic events in people suffering from myocardial infarction or ischaemic stroke (via P2Y12 receptor antagonists) and by relieving the symptoms of dry eye disorder (via P2Y2 receptor agonists). Burnstock and colleagues also cloned the P2X3 receptor which mediates pain information, and P2X3 antagonists are being developed as novel analgesics. As well as clear clinical benefits, these drug developments are associated with substantial economic and commercial benefits.
Research on the anatomy, physiology and palaeoecology of pterosaurs by the Palaeobiology Group at Portsmouth University has had a wide and acknowledged impact, underpinning the creation and production of block-buster and pioneering television and film productions worldwide. The impact of this work is recognised by Sir David Attenborough, and by the producers of such TV successes as Walking With Dinosaurs and Flying Monsters 3D. These award-winning productions, highlighting our work, have reached a global audience and supported the generation of millions of pounds by the UK TV and film industry. Whilst the income generated is highly significant, perhaps their greatest impact lies in fostering a positive view of science, particularly in young audiences, by bringing cutting-edge evolutionary science direct to the World's film and TV screens.
Stem cells play an important role in drug discovery and development of therapeutic interventions. Differentiation (and maintenance) of stem cells into specialised cells is achieved by controlled application of specific, expensive growth factors.
Dr Hyvönen has developed an efficient method for producing highly purified, bioactive human growth factors from E.coli, reducing costs by up to 10-FOLD. tHE TECHNOLOGY HAS BEEN LICENSED TO A major international manufacturer of growth factors (PeproTech Inc.), and to a UK-based specialist stem cell company (CellGS Ltd), enabling them to implement new products and business strategies. Through a departmental facility, material is also being sold to external companies and Cambridge Stem Cell Consortium members. In addition, Dr Hyvönen has made his expertise available to biotech companies through consultancy.