Log in
Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.
Research performed at the University of Leeds allows the petroleum industry to reduce radically the amount of time that taken to estimate the key properties of tight sandstones containing natural gas. These properties largely determine whether gas fields are economically viable. Tests used in the past have taken between six months and two years to complete; with the Leeds research, results can now be obtained in less than one day — a radical improvement. Industry has used the results to justify drilling new prospects and to improve understanding of the controls on gas and water production in existing fields, which has shaped appraisal and production strategies.
Research by the University of Aberdeen's research group on Stratigraphic Evolution of large Igneous Provinces (StratLIP) has guided the successful development of new oil-producing fields in the North East Atlantic that were previously not in production, aided by an improved understanding of the geological context within which the reserves were discovered. The research has informed every phase of exploration and development by several of the UK's leading energy companies, in one project saving the partners £600m and proving the financial viability of a major oilfield development deemed important to the UK's oil supply. The findings have contributed to an increase in the UK's energy security and the strength of the UK's oil and gas industry, especially in the context of the local economy of Aberdeen, the energy capital of Europe.
Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.
Durham research on hydraulic fracturing was an important part of the UK government's reasoning for lifting the ban on hydraulic fracturing to recover gas and oil from shale, which has an estimated commercial value in the UK of £1500 billion. We demonstrated that hydraulic fractures will not be tall enough to cause contamination of water supplies where there is a sufficient vertical separation (> 600 m) between the shale reservoir and the drinking water aquifer. Durham research has also provided critical data needed by national environment agencies setting regulations, oil and gas companies seeking permission from regulators to drill wells and for local communities that are objecting to hydraulic fracturing.
One of the major problems experienced in the oil production industry is the formation of mineral scale deposited downhole within an oil reservoir and topside. The scale creates a blockage causing a detrimental effect to the productivity of the well. ERPE Research in scale management has led to the following impacts in the REF2014 period:
Research at the University of Salford directed at the development of a new consumer aerosol without liquefied gas propellant; the Salford Eco-valve, demonstrates the following impact:
Multiphase flow research at Imperial has developed bespoke software code, and provided unique data for validation of commercial codes used for oil-and-gas design. This research has enabled global oil companies (e.g. Chevron) to undertake successfully the design of deep-water production systems requiring multi-billion pound capital investments. This research has also allowed SPT Group (now owned by Schlumberger), one of the largest software (OLGA) providers to the oil industry, to maintain their position as market leaders.
Statistical research undertaken by the Industrial Statistics Research Unit (ISRU) at Newcastle University has led to improved accounting of gas in the national transmission system provided by National Grid. A discrepancy, known as unaccounted for gas (UAG), results in accrued costs and potentially unfair billing. In 2009/10, UAG is estimated to have cost £100 million. National Grid has adopted our research results by making fundamental changes in their data utilisation with benefits that reach all the distributers and users of gas throughout the UK. In 2010 our methods helped identify a source of UAG, resulting in £14 million being returned to the community. Our reports inform decisions made by regulators and provide data-based evidence to support negotiations between national transmission, local distributors and users.
Fifteen years of ceramic membrane research at Robert Gordon University and the applied development programme by the RGU spinout Gas2 Ltd have culminated in the development of the Gas2 pMR™ CPOX process and its new GTL reactor. This technology has captured the attention of major global energy investment company Lime Rock Partners for possible onshore and offshore deployment addressing the monetisation of stranded gas and to avoid flaring and venting of unwanted associated gas. The economic impact is £17.2 million in equity investment during 2008- 2013 with concomitant impacts of new processes and employment opportunities at Gas2, with environmental impact for the oil & gas industry from eco-friendly handling of stranded natural gas.