Similar case studies

REF impact found 36 Case Studies

Currently displayed text from case study:

Managing risk associated with crystal polymorphism in pharmaceutical development

Summary of the impact

Nearly all solid dosage forms contain drugs in crystalline form; and all crystals have the potential to `morph', suddenly, into different forms which can affect the safety and efficacy of the medicinal product. A number of high-profile cases in which marketed medicines had to be withdrawn [Lee, et al., Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259-280] led multinational drug company Pfizer to conclude that a greater understanding of polymorphism was required to enable drug product design for the 21st Century. The University of Greenwich pioneered methods to predict crystal behaviour on the shelf and during manufacture that were affordable, timely and effective. It enabled Pfizer to select the optimal polymorphic drug form and manage risk associated with uncontrolled solid-state transformations, thereby safeguarding patients and avoiding huge costs.

Submitting Institution

University of Greenwich

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Inorganic Chemistry, Physical Chemistry (incl. Structural)

Inhaled delivery of life-saving medicines - The Vectura story

Summary of the impact

Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.

Submitting Institution

University of Bath

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Biocompatible polymer coatings for the long-term implantation of biomedical devices in humans

Summary of the impact

Biomedical devices that need to be implanted into the body typically experience the so-called foreign-body reaction: proteins adhere to the surface of the devices, leading to rapid loss of function and, eventually, to a requirement for replacing the device. Between October 2006 and September 2011, The University of Reading, in collaboration with the UK SME BioInteractions Ltd., developed and evaluated a range of new polymers for coating implantable biomedical devices, especially coronary stents and catheters. The result was a coating system that can deliver a drug controllably over a pre-defined period, leading to the commercial biomaterials platforms AdaptTM and AssistTM. This work resulted in capital investment by Biointeractions Ltd and a substantial increase in their research staffing.

Submitting Institution

University of Reading

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Biomedical Engineering, Materials Engineering

Improved drug discovery and development through use of novel iridium catalysts

Summary of the impact

Labelled compounds form an essential part of drug discovery and development within the pharmaceutical industry. Novel iridium catalysts, developed by Kerr at WestCHEM since 2008, have introduced a step-change in the ability to label pharmaceutical candidate compounds with radioactive (tritium) or non-radioactive (deuterium) isotopes.

The catalysts are applicable to specific types of compounds that comprise approximately one-third of all drug candidates. Advantages of the catalysts include greater efficacy (less catalyst needed and higher yield of labelled product, giving cost savings), greater speed (efficiency savings), and a significant decrease in radioactive waste compared with previous methods (environmental and safety benefits).

Even since 2008, their adoption within the pharmaceutical industry has been extremely rapid; e.g., the multinational pharmaceutical company AstraZeneca now applies the Kerr methodology to 90% of their relevant candidate compounds. Additional impact has been achieved by Strem Chemicals who have been manufacturing and marketing the catalysts worldwide since October 2012. Even in that very short period, multiple sales have been made on three continents providing economic benefit to the company.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Development of more effective technologies for oral delivery of drugs via improved understanding of the physiological features of the gastrointestinal tract

Summary of the impact

Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Neurosciences, Pharmacology and Pharmaceutical Sciences

Abraham solvation parameter approach benefiting the chemical industries

Summary of the impact

The Abraham solvation parameter approach developed at UCL has become integral to the work carried out by drug discovery teams at [text removed for publication] and other major pharmaceutical companies, as well as research and development groups at international chemical companies including Syngenta and [text removed for publication]. It enables chemists to predict physicochemical and biochemical properties of chemicals, including drugs and agrochemicals, rapidly and efficiently, without the need to conduct time-consuming experiments. The method helps drug discovery teams to identify and optimise the most promising compounds, and often results in fewer compounds being made before a candidate is selected, saving time and resources. The approach has been integrated into software used for drug discovery [text removed for publication].

Submitting Institution

University College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry
Biological Sciences: Biochemistry and Cell Biology

3. Inhaled medicines: Leveraging benefits to global pharma and international development.

Summary of the impact

i2c Pharmaceutical Services is the trading name for a Cardiff University spin-out company based on Cardiff University research excellence and specialising in pharmaceutical inhaler product research and development. i2c's research in formulation technologies and clinical testing has enabled development of new inhalational medicinal products for the healthcare markets in both developed and emerging countries. Impacts arising from research are at local, national and international levels and evidenced by marketed products, the improved business performance of commercial concerns and the creation of highly skilled jobs.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Innovative approach to assessing drug harms has major impact on government policy and public awareness

Summary of the impact

A new, more structured way of assessing the various harms done to individuals, families, communities and wider society by a range of legal and illegal drugs was first articulated by Professor David Nutt and colleagues at the University of Bristol. The "rational scale" they developed in the light of their research has stimulated extensive policy debate and informed drug classification in the UK and overseas. The research underpinning the scale has been disseminated through numerous public lectures and discussions and has stimulated worldwide media coverage. As a consequence, public awareness of drug harms has increased and public engagement in important debates about drugs has intensified.

Submitting Institution

University of Bristol

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Societal

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences, Public Health and Health Services
Psychology and Cognitive Sciences: Psychology

Commercial and health impacts of drug modelling tools

Summary of the impact

Research at the University of Sheffield developed pharmacokinetic tools that enable prediction of drug absorption, distribution, metabolism and excretion, and potential drug-drug interactions. In 2001 the University created a spinout company, Simcyp Ltd, to commercialise the technology. The impacts are:

  • Commercial: the company was awarded the Queen's Award for Enterprise in Innovation in 2010 and in February 2012 was sold for $32M to Certara, a leading provider of drug discovery and development software.
  • Commercial: the Simcyp population-based Simulator is now used in drug development by many of the world's leading pharmaceutical companies, saving them time and millions of dollars through more efficient and targeted testing.
  • Health: human and animal test subjects have benefitted by optimisation of the design of trials to minimise unnecessary drug exposure.
  • Health: the Simcyp Paediatric module has improved the care of children by providing reliable evidence to better guide dosage.

Submitting Institution

University of Sheffield

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Neurosciences, Pharmacology and Pharmaceutical Sciences

Evidence-based safer injecting equipment for users of illicit drugs

Summary of the impact

The health of people who inject illicit drugs, the formulation of harm-reduction policies, and the work of associated businesses and social enterprises have all benefited from the University's laboratory and practice research into the safety and efficacy of materials and equipment used in needle-exchange programmes. The research has informed the development of safer acids for injection preparation, safer injecting paraphernalia (e.g., spoons and filters) and an information film which has been distributed from needle exchanges on DVD and viewed over 50,000 times online. The research has led to enhanced support and protection for injecting drug misusers, and to advances in harm reduction in the UK, France and Canada.

Submitting Institution

University of Bath

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Societal

Research Subject Area(s)

Medical and Health Sciences: Public Health and Health Services

Filter Impact Case Studies

Download Impact Case Studies