Log in
The development of the chemistry of Selectfluor® (F-TEDA-BF4) has resulted in this Manchester-discovered reagent becoming the world's most widely used commercial electrophilic fluorinating agent to introduce fluorine into a range of pharmaceuticals and agrochemicals. Annual worldwide production is ca. 25 tonnes and sales estimated to be US$7.5m. Selectfluor is used in the synthesis of fluticasone, a fluorinated corticosteroid which is the active ingredient in GSK's Advair ($3.6bn sales in 2010) used in the treatment of asthma and chronic obstructive pulmonary disease symptoms; top 25 selling drugs Flixonase, Flixotide, Flonase, Flovent HFA and Advair Diskus which had total sales of over $17bn between 2009-2012.
Manchester research on differential protection, synchronised using the global positioning system (GPS), has opened up a radically new approach to protection and integrity of electrical transmission networks. The research has led to updating of international technical guides and international standards. In the UK, National Grid has implemented policies based on the research, which will save about £0.5m per annum in substation upgrade costs. The market for GPS synchronised differential protection products is £400m pa globally. This figure represents the "insurance premium" against the avoided cost of a power system failure, estimated in a report on the North-East USA blackout to be $6bn in economic cost and 11 directly attributable deaths.
The field of conceptual chemical process design as practiced industrially has been influenced significantly by the outputs from the Centre for Process Integration (CPI) at Manchester. Process Integration Ltd (PIL) was spun-out from Manchester and currently employs over 50 staff globally, who have conducted projects that have resulted in annual cost savings of hundreds of millions of US dollars. The application of CPI technology has led to significant reductions in both energy costs and emissions of greenhouse gases. Since 2008 ca. US$350m of savings have been realized through the exploitation of CPI technology with US$1.4m generated from software sales.
This University of Manchester research underpins UK industry's global position in millimetre- wave imaging and ultra-high-precision sensing. These are key technologies in a range of industrial, medical and consumer electronics applications. The devices and methods developed by the research team are now used by a range of companies leading to economic impacts for the UK in strong export markets. In this case study we provide examples of impacts that support commercial sales in excess of £300m by UK SME and FTSE-listed companies in three sectors: automotive radar (e2v), terahertz imaging (TeraView), and linear encoders (Renishaw PLC).
BRITEST is a global leader in the development of innovative process solutions for the chemical processing sector with > £500m of value being realized since 2008. Research in Manchester (1997-2000) generated a set of novel tools and methodologies which analyse chemical processes to identify where and how process improvements could be made. BRITEST was established in 2001 as a not-for-profit company to manage the technology transfer and effective deployment of these tools and methodologies into industry. Manchester holds the IP arising from the underpinning research and has granted an exclusive license to BRITEST for use and exploitation of the toolkit.
This research enables longer component lives for industrial gas turbines and jet engines, and development of new protective coating systems. Siemens and Rolls Royce have improved their selection of materials systems used in components in the hot gas paths e.g. blades, vanes, discs, and seals. Degradation mechanisms in operating turbines, or anticipated in future materials systems, limit the lives of these components and the efficiencies of systems. New functionally graded coatings were created that are highly resistant to hot corrosion and oxidation. Methodology has been adopted in ISO standards BS ISO 26146:2012, BS ISO 14802:2012 and ISO/CD 17224.
This case study concerns economic impact accruing in the aerospace engineering industry in Europe from software developed to perform stress analysis. Durham research has led to a spinout company, Concept Analyst, Ltd., and the software resulting from the research (Concept Analyst) is currently licensed by the following companies: BAE Systems (Brough, Samlesbury, Warton, Prestwick sites), Agusta Westland, Assystem, Jesmond Engineering, Spirit Aerospace. Trials are currently in place at Airbus UK and Bombardier, Canada. An agreement has been signed with the fatigue consultancy Jesmond Engineering, Ltd. to market the software within the aerospace sector. Economic impact arises from time savings for designers using Concept Analyst as compared to conventional commercial tools.
Modern processor architectures (networked multi/many-core nodes), together with society's expectation of evermore-complex applications, require fluent mastery of concurrency. To enable this mastery, in the last two decades our group has taught, researched and developed fundamental notions of concurrency, new programming languages (occam-pi, and the KRoC toolset), libraries (JCSP, CCSP, C++CSP, CHP), runtime systems (the KRoC/CCSP multicore scheduler) and tools based on formal process algebra (Hoare's CSP, and Milner's pi-calculus).
Our work has had impact in providing new mechanisms for software development in a number of sectors such as chip design, large-scale real-time systems, formal interfaces and testing and the space industry. Testimonials supporting this are available from a variety of industrial and commercial sources (NXP Semiconductors, Big Bee Consultants, Philips Healthcare, 4Links Ltd. and Microsoft Research Cambridge). The breadth of impact of the work is evidenced by download statistics, as well as by third-party contributions to libraries and documentation.
RTT (Real Time Tomography) scanning systems for airport baggage are becoming increasingly important due to growing air traffic and greater security concerns. Prior to our research, Rapiscan, a leading producer of baggage scanners, had been unable to make full use of the hardware in their latest generation of scanner prototypes. Our novel theory and image reconstruction algorithms are now a core part of a commercially successful 3D scanner that is significantly faster and more accurate than previous generations. The two models, RTT80 and large RTT110, have been approved by regulatory authorities and have already been field trialled at Manchester Airport and deployed at Seattle airport, with further US$20m orders placed.
The research and impact described herein was flagged in the citation for the UoM's 2013 Queen's Anniversary Prize for Higher and Further Education for its work in imaging techniques to support advanced materials and manufacturing.
Catalysis is a major UK industry strength and wealth generator for the UK economy. Research carried out in the group of Professor Matthew Davidson in the Department of Chemistry at the University of Bath resulted in the development of titanium and zirconium alkoxide catalysts for use in three industrial polymerisation processes and patented by the UK companies ICI Synetix and Johnson Matthey. Patents have recently also been acquired by the Indian multinational Dorf Ketal and filed by the Dutch multinational Corbion Purac. The research has resulted in the adoption of new catalysts in industry leading to increased turnover, onward dissemination and implementation of the Bath intellectual property. It has also generated £4.6M from sale of intellectual property and an increase in generated sales of new, sustainable titanium catalysts that replace heavy metals such as tin, antimony and mercury in major industrial processes. The intellectual property and process developments have been implemented globally in the poly(ethylene terephthalate) (PET) and poly(urethane) (PU) plastics markets, worth $23B and $33B, respectively, in 2010.