Similar case studies

REF impact found 48 Case Studies

Currently displayed text from case study:

Diagnostics and novel life-saving therapies for aspergillosis

Summary of the impact

Research at the University of Manchester (UoM) has changed the landscape of medical care and research in fungal infections internationally. The impacts include: the world's first commercialised molecular diagnostic products for aspergillosis and Pneumocystis pneumonia (£10m investment); pivotal contributions to the preclinical development (£35m investment), clinical developments and registrations of 3 new antifungals with combined market share of ~$2 billion; one (voriconazole, 2012 sales >$750m worldwide) now first line therapy for invasive aspergillosis with improved survival of 15-20%; and internationally validated methods to detect azole resistance in Aspergillus (an emerging problem partly related to environmental spraying of azole fungicides for crop protection).

Submitting Institution

University of Manchester

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Oncology and Carcinogenesis

Topical formulation development using in silico and in vitro/ex vivo models

Summary of the impact

The university's Pharmacy and Pharmacology unit has developed and validated novel in silico and in vitro/ex vivo models for use by the pharma industry to select drug candidates, optimise formulations, determine the posology for clinical trials and show bioequivalence. This resulted in: the approval of two products for actinic keratosis (Picato® and Zyclara®); a generic nail formulation approved for use based on the demonstration of equivalence using the in vitro/ex vivo models described with no clinical testing (the first time this has occurred); and the translation and commercialisation of two dermal drug delivery-based patented technologies (licensing deals with Sinclair IS and major pharmaceutical companies).

Submitting Institution

University of Hertfordshire

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Commercial and health impacts of drug modelling tools

Summary of the impact

Research at the University of Sheffield developed pharmacokinetic tools that enable prediction of drug absorption, distribution, metabolism and excretion, and potential drug-drug interactions. In 2001 the University created a spinout company, Simcyp Ltd, to commercialise the technology. The impacts are:

  • Commercial: the company was awarded the Queen's Award for Enterprise in Innovation in 2010 and in February 2012 was sold for $32M to Certara, a leading provider of drug discovery and development software.
  • Commercial: the Simcyp population-based Simulator is now used in drug development by many of the world's leading pharmaceutical companies, saving them time and millions of dollars through more efficient and targeted testing.
  • Health: human and animal test subjects have benefitted by optimisation of the design of trials to minimise unnecessary drug exposure.
  • Health: the Simcyp Paediatric module has improved the care of children by providing reliable evidence to better guide dosage.

Submitting Institution

University of Sheffield

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Neurosciences, Pharmacology and Pharmaceutical Sciences

New Approaches to Drug and Chemical Safety Assessment

Summary of the impact

The development of new paradigms for toxicity testing has benefitted the Scottish economy and population in Tayside through two biotechnology companies which, between them, employ up to 40 staff and have had a combined turnover of some £15M over the last five years. The benefits extend to the international pharmaceutical, cosmetic, chemical and consumer product industries, which have gained access to innovative new methods for safety testing at a time of acute need for more predictive methods to evaluate drug safety and better in vitro tests for consumer products. Patients and consumers in Europe and worldwide have benefitted indirectly from improved risk assessment of drugs, consumer products and environmental contaminants.

Submitting Institution

University of Dundee

Unit of Assessment

Clinical Medicine

Summary Impact Type

Political

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Abraham solvation parameter approach benefiting the chemical industries

Summary of the impact

The Abraham solvation parameter approach developed at UCL has become integral to the work carried out by drug discovery teams at [text removed for publication] and other major pharmaceutical companies, as well as research and development groups at international chemical companies including Syngenta and [text removed for publication]. It enables chemists to predict physicochemical and biochemical properties of chemicals, including drugs and agrochemicals, rapidly and efficiently, without the need to conduct time-consuming experiments. The method helps drug discovery teams to identify and optimise the most promising compounds, and often results in fewer compounds being made before a candidate is selected, saving time and resources. The approach has been integrated into software used for drug discovery [text removed for publication].

Submitting Institution

University College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural), Theoretical and Computational Chemistry
Biological Sciences: Biochemistry and Cell Biology

Safer treatment of childhood leukaemia through improved delivery of thiopurine drugs

Summary of the impact

A routine test to screen for patients genetically disposed to serious side effects from treatment with thiopurine drugs has been widely adopted following research by the Academic Unit of Clinical Pharmacology at the University of Sheffield. The test has spared patients painful and potentially life-threatening sepsis, and saved the considerable associated treatment costs which have been estimated to be over £9,000 per patient for a 17 day hospital stay. It has also led directly to a change in clinical guidelines and recommendations in both the USA and UK.

Submitting Institution

University of Sheffield

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Oncology and Carcinogenesis, Pharmacology and Pharmaceutical Sciences

3. Inhaled medicines: Leveraging benefits to global pharma and international development.

Summary of the impact

i2c Pharmaceutical Services is the trading name for a Cardiff University spin-out company based on Cardiff University research excellence and specialising in pharmaceutical inhaler product research and development. i2c's research in formulation technologies and clinical testing has enabled development of new inhalational medicinal products for the healthcare markets in both developed and emerging countries. Impacts arising from research are at local, national and international levels and evidenced by marketed products, the improved business performance of commercial concerns and the creation of highly skilled jobs.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Development of more effective technologies for oral delivery of drugs via improved understanding of the physiological features of the gastrointestinal tract

Summary of the impact

Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Neurosciences, Pharmacology and Pharmaceutical Sciences

Improved drug discovery and development through use of novel iridium catalysts

Summary of the impact

Labelled compounds form an essential part of drug discovery and development within the pharmaceutical industry. Novel iridium catalysts, developed by Kerr at WestCHEM since 2008, have introduced a step-change in the ability to label pharmaceutical candidate compounds with radioactive (tritium) or non-radioactive (deuterium) isotopes.

The catalysts are applicable to specific types of compounds that comprise approximately one-third of all drug candidates. Advantages of the catalysts include greater efficacy (less catalyst needed and higher yield of labelled product, giving cost savings), greater speed (efficiency savings), and a significant decrease in radioactive waste compared with previous methods (environmental and safety benefits).

Even since 2008, their adoption within the pharmaceutical industry has been extremely rapid; e.g., the multinational pharmaceutical company AstraZeneca now applies the Kerr methodology to 90% of their relevant candidate compounds. Additional impact has been achieved by Strem Chemicals who have been manufacturing and marketing the catalysts worldwide since October 2012. Even in that very short period, multiple sales have been made on three continents providing economic benefit to the company.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Innovative approach to assessing drug harms has major impact on government policy and public awareness

Summary of the impact

A new, more structured way of assessing the various harms done to individuals, families, communities and wider society by a range of legal and illegal drugs was first articulated by Professor David Nutt and colleagues at the University of Bristol. The "rational scale" they developed in the light of their research has stimulated extensive policy debate and informed drug classification in the UK and overseas. The research underpinning the scale has been disseminated through numerous public lectures and discussions and has stimulated worldwide media coverage. As a consequence, public awareness of drug harms has increased and public engagement in important debates about drugs has intensified.

Submitting Institution

University of Bristol

Unit of Assessment

Psychology, Psychiatry and Neuroscience

Summary Impact Type

Societal

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences, Public Health and Health Services
Psychology and Cognitive Sciences: Psychology

Filter Impact Case Studies

Download Impact Case Studies