Similar case studies

REF impact found 4 Case Studies

Currently displayed text from case study:

Reductions in emissions and improvements in boiler efficiency at power stations burning coal and biomass

Summary of the impact

Two related research activities 1) on low NOx burners and 2) on co-firing of biomass have led to combined economic savings estimated to be in the region £40M-£70Mpa.

The fitting of low NOx burners to power station boilers reduced the NOx emissions but resulted in a reduced amount of saleable bottom slag and a finer pulverised fuel ash (pfa), which placed an increased load on the electrostatic precipitators. Additions of pfa to the power station coals were found to increase the overall combustion efficiency, while at the same time providing an increased amount of a saleable boiler slag and a pfa that could be used as a cement replacement material.

Despite the very different nature of the ashes produced from the combustion of biomass and coals, a detailed characterisation of the residues demonstrated that, with an appropriate choice of both biomass type and coal, a successful co-firing at up to 50% of coal replacement with biomass was possible. Co-combustion with increased levels of coal replacement has produced significant reductions in power station emissions, resulting in both environmental and economic benefits.

Submitting Institution

Imperial College London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Interdisciplinary Engineering

10. A novel linear gasifier panel design for underground coal gasification (UCG) under weak roof rock conditions

Summary of the impact

A US$1.5 billion clean coal project at the YiHe Coal Field in Inner Mongolia was established in June 2011 as a joint venture between UK based Seamwell International Ltd and the state-owned China Energy Conservation and Environmental Protection Group. This is the first commercial project to employ the novel "Linear UCG Gasifier" design developed specifically for use under extremely weak underground roof conditions by Durucan, Korre and Shi at Imperial College London. Underground gasification under such conditions is made possible solely because of the novel gasifier design, which has opened up the potential to transform over 720 million tonnes of coal resource, that would otherwise have remained trapped, as a clean coal energy source for the next 20 years.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Environmental Engineering, Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering

Combustion instrumentation for power plant optimisation

Summary of the impact

Instrumentation technologies developed at Kent, in particular pulverised fuel flow metering, on-line particle sizing, on-line fuel tracking and burner flame imaging, have enabled combustion engineers to diagnose large-scale complex combustion processes and optimize the operation of coal, biomass and heavy-oil fired power plants. The technologies operate on novel sensing and advanced measurement principles and have produced real-time measurement and plant condition monitoring data that were previously unavailable. Instrumentation systems operating on the technologies have been applied successfully to a range of pilot plants and on full-scale power plants in countries including the UK, France, China and Saudi Arabia. Work has enabled the power industry to produce electricity safely while minimising environmental impact and employing a diverse range of fuels. The instrumentation technology informed the conversion of Drax power station from 100% coal firing to biomass/coal co-firing during 2011/2012 as it sought to halve its carbon footprint within five years. The technology sourced and informed the alleviation of significant vibration problems within a heavy-oil fired power plant in Saudi Arabia.

Submitting Institution

University of Kent

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering, Interdisciplinary Engineering

Performance investigation of light steel framing

Summary of the impact

As academic lead partner Professor Ogden and his team at Oxford Brookes University were responsible for a major research programme focusing on the development of light steel construction technology. Major industry funding in conjunction with EU support, facilitated a detailed understanding of the technology, and various demonstration projects including the then largest light steel framed building in Europe, constructed at Oxford Brookes University. The results of the work have been adopted by industry in order to innovate novel construction solutions. As a consequence light steel framing is now the favoured method of construction across the entire modular off-site buildings sector and in other mass market construction applications including site-built structural framing and infill walling. The value of the market that that has emerged in the UK during the census period is estimated to be £78 million per annum.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Economic

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Engineering Design

Filter Impact Case Studies

Download Impact Case Studies