Log in
A number of trimaran ocean-going ships, based on original designs conceived by UCL researchers, are currently in use. RV Triton, the demonstrator trimaran, is presently employed as a patrol vessel to provide Australian Customs and Border Protection with increased capability and lower fuel consumption compared to a monohull. The Independence Class of littoral combat ships currently entering service in the US Navy offers improved military capability and one-third lower fuel consumption, with the ensuing benefit of creating almost 2,000 jobs at the shipbuilder, Austal. Similarly, trimaran ferries with their inherent stability have improved passenger comfort and their reduced fuel consumption has lowered operating costs.
Marine biofouling is caused by the adhesion of macroalgae, microbial slimes and other marine organisms for instance barnacles to underwater surfaces, such as ships hulls. The research from the Bioadhesion and Biofouling Research Group (BBRG) that tackles this important problem has had a direct impact on commerce, with three new companies entering the marine coatings industry and a fourth achieving superior effectiveness from their existing product line. All have been able to develop novel products (with associated patents) positioned to address the requirements of an increasingly-stringent environmental legislative framework, seeking to reduce or eliminate the impact of toxic biocides on non-target species in the marine environment. In addition, some of these companies have enjoyed increased investments in their R&D programmes and proven market advantage over their competitors.
The Imperial College Pile `ICP' effective-stress pile design approaches for offshore foundations offer much better design reliability than conventional methods. Their use delivers substantial economies in many hydrocarbon and renewable energy projects, better safety and confidence in developing adventurous structures in others. The ICP has enabled production in otherwise unviable marginal hydrocarbon fields, new options in high-value deep-water projects and helped eliminate installation failures that can cost hundreds of £million. We present evidence that the research delivered direct benefits exceeding £400m since 2008 in projects known to us, with larger worldwide benefits through project risk reduction and independent exploitation.
OxCal is the most popular software package world-wide for calibrating and analysing dates within the carbon dating process, enabling the accurate dating of objects from the past. The brainchild of Prof. Christopher Bronk Ramsey, Director of the Oxford Radiocarbon Accelerator Unit (ORAU), OxCal is based on chronologies refined by the use of Bayesian statistical methods, and provides users with access to high-quality calibration of chronological data, now the basis for global chronologies. It is available online and free to download, and has played a highly significant role in establishing the ORAU as one of the pre-eminent international radiocarbon dating facilities. Funded by the NERC, and used widely within professional archaeology as well as other disciplines, OxCal has also played a key role in research projects (within Oxford and beyond) brought to the attention of the general public by the media.
Government funded research into the design of high-speed marine craft from a human factors perspective has achieved significant international impact for organisations and personnel including the UK MOD, US Department of Defense, Canadian, Dutch, and Australian Defence Forces, US Coastguard and the Royal National Lifeboat Institute (RNLI). The research was instrumental in the launch of a marine consultancy and a commercial training organisation; the latter delivering research led training courses worldwide. Moreover, the research contributed to improved working conditions for military and RNLI personnel through changes in work practices, equipment design and procurement and the revising of an international whole-body vibration standard.
The Stonehenge Riverside Project was carried out between 2003 and 2010, to determine the purpose of Stonehenge by investigating both the monument and the surrounding landscape. The project's reach and importance have been considerable, from training and inspiring the next generation of professional archaeologists to stimulating people worldwide with new knowledge about Stonehenge, providing artistic inspiration and changing perceptions and beliefs about the use of the site, leading to significant economic, cultural and technological benefits.