Similar case studies

REF impact found 6 Case Studies

Currently displayed text from case study:

Incorporating expert knowledge in complex industrial and policy applications

Summary of the impact

Techniques developed at The University of Nottingham (UoN) have enabled organisations to deal with uncertainty in complex industrial and policy problems that rely on the elicitation of expert opinion and knowledge. The statistical toolkit produced for use in complex decision-making processes has been deployed in a wide range of applications. It has been particularly useful in asset management planning in organisations such as the London Underground, government approaches to evidence-based policy, and the Met Office UK Climate Projection tool (UKCP09), which is used by hundreds of organisations across the UK such as environment agencies, city and county councils, water companies and tourist boards.

Submitting Institution

University of Nottingham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Economics: Applied Economics, Econometrics

Managing uncertainty in computer models: aircraft engine design and food safety risk assessment

Summary of the impact

Pratt & Whitney (one of the world's largest makers of aircraft engines) has developed a process, "Design for Variation" (DFV), that uses Bayesian methods developed at Sheffield for analysing uncertainty in computer model predictions within the design, manufacture and service of aircraft engines. The DFV process significantly improves cost efficiency by increasing the time an engine stays operational on the wing of an aircraft, so reducing the time that the aircraft is unavailable due to engine maintenance. DFV also saves costs by identifying design and process features that have little impact on engine performance, but are expensive to maintain. Pratt & Whitney estimate the DFV process to generate savings, for a large fleet of military aircraft, of [text removed for publication].

The UK Food and Environment Research Agency (Fera) has used these methods in their risk analyses, for example in assessing risks of exposure to pesticides.

Submitting Institution

University of Sheffield

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing
Economics: Econometrics

Industrial impact of Bayes linear analysis

Summary of the impact

This study demonstrates how Bayes linear methodologies developed at Durham University have impacted on industrial practice. Two examples are given. The approach has been applied by London Underground Ltd. to the management of bridges, stations and other civil engineering assets, enabling a whole-life strategic approach to maintenance and renewal to reduce costs and increase safety. The approach has won a major award for innovation in engineering and technology. The methodology has also been applied by Unilever and Fera to improve methods of assessing product safety and in particular the risk of chemical ingredients in products causing allergic skin reactions.

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Economics: Econometrics

History matching and uncertainty assessment in the oil and gas industry

Summary of the impact

ENABLE is a history matching and uncertainty assessment software system for the oil industry, whose inference engine was produced by the Durham Statistics group, based on their research on uncertainty quantification for complex physical systems modelled by computer simulators. The system optimizes asset management plans by careful uncertainty quantification and reduces development costs by accelerating the history matching process for oil reservoirs, resulting in more informed technical and economic decision-making. ENABLE was acquired by Roxar ASA in 2006 and current users include the multinational oil company Statoil. From January 2008 to September 2012 (the most recent set of figures) the turnover attributed to ENABLE was [text removed for publication].

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

Policy implications of uncertainties related to climate change

Summary of the impact

The Climate Change Act, 2008, constructed a legally-binding long-term framework for the UK to cut greenhouse gas emissions and a framework for building the UK's ability to adapt to a changing climate. The Act requires a UK-wide climate change risk assessment (CCRA) that must take place every five years and a national adaptation programme (NAP), setting out the Government's objectives, proposals and policies for responding to the risks identified in the CCRA. The CCRA, and thus the NAP, drew heavily on the uncertainty analysis for future climate outcomes, published in 2009 by the Met Office as the UK Climate Projections UKCP09, which in turn drew heavily on research into the Bayesian analysis of uncertainty for physical systems modelled by computer simulators carried out at Durham University. A wide range of industries and public sector organisations likely to be affected by climate change have consulted with the Met Office on UKCP09 to inform decisions on policy and investment, involving billions of pounds, in sectors as diverse as flood defence, transport, energy supply and tourism.

Submitting Institution

University of Durham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Statistics

Measurements of contamination sampling

Summary of the impact

The chemical contamination of food or soil poses a significant risk to human health; regulatory decisions on the level of this risk are based upon measurements of contamination. To improve these risk assessments, Ramsey devised the `duplicate method' to estimate the level of uncertainty in measurements of contamination. The application of this method is now included in statutory guidance provided by the soil, food and water sectors to improve reliability in the classification of materials as contaminants and thereby reduce the worldwide risk of contamination to humans.

Submitting Institution

University of Sussex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Environmental Engineering
Economics: Econometrics

Filter Impact Case Studies

Download Impact Case Studies