Similar case studies

REF impact found 2 Case Studies

Currently displayed text from case study:

Increasing the yield of medically important proteins in plants by suppression of RNA silencing

Summary of the impact

Genetically engineered plants are increasingly used to over-express foreign genes, including those for pharmaceutically valuable polypeptides. However, expression of transgenes is repressed via RNAi, a system that probably evolved to combat viral pathogens. In response, viruses themselves encode a "silencing suppressor protein" that counteracts this defence response. This was discovered by David Baulcombe and colleagues at the Sainsbury Laboratory at UEA, who exploited this phenomenon by introducing the suppressor gene into plants and improving them as hosts for transgene expression. RNAi Suppression Technology was patented worldwide and licensed for fees >£500k to several companies, including Medicago, that use it to generate plants that effectively produce pharmaceuticals.

Submitting Institution

University of East Anglia

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics
Medical and Health Sciences: Immunology, Medical Microbiology

Health, agriculture and industry benefit from Bristol’s groundbreaking molecular toolkit

Summary of the impact

The Basidio Molecular Toolkit developed at the University of Bristol has enabled the pharmaceutical industry to achieve the efficient genetic manipulation of a group of basidiomycete fungi (mushrooms and toadstools) and thereby produce medically important antibiotics and proteins cost-effectively. For example, GlaxoSmithKline's collaboration with the Bristol team saved 70,000 hours of research and development in getting a natural antibiotic called pleuromutilin to market. In China, the system is used to produce medicinal anti-cancer proteins from fungi in commercially viable quantities. In addition, government agricultural research programmes in the US and Ireland have adopted the toolkit to increase the efficiency of their search for disease-resistant crops in the interests of farmers, consumers and economies.

Submitting Institution

University of Bristol

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Genetics, Microbiology

Filter Impact Case Studies

Download Impact Case Studies