Log in
This case study details the impact arising from a sustained public engagement activity with sixth-form students (16 to 17 year-olds) across two Further Education Colleges during 2012/13. The activity was underpinned by research carried out in the Unit (2010-2012). The programme resulted in multiple impacts as defined under "Impacts on society, culture and creativity". Specifically:
These impacts are evidenced by the user feedback collected from 50 questionnaires, factual statements from the teachers and individual participants. This case study details the impact arising from public engagement as described in the recommendations of the National Co-ordinating Centre for Public Engagement (NCCPE).
Lancaster undertakes fundamental research into the space plasma environments. AuroraWatch UK, a spin-out of this research, provides a free service alerting when aurorae may be visible from the UK. The number of AuroraWatch subscribers has increased significantly from 22,000 in 2008 to over 109,000 at present. A survey by the Royal Astronomical Society suggests that AuroraWatch is very effective in promoting interest in science. As a result of subscribing to AuroraWatch, 3667 respondents watch science on television, 4437 read science magazines, websites and blogs, 524 now study science, 865 participate in citizen-science projects, and 1400 listed other changes in their behaviour (e.g. aurora sightseeing trips). The AuroraWatch School programme involves 1800 pupils across UK.
Our research on the physiological effects of the electromagnetic fields generated in magnetic resonance imaging (MRI) has been used by: (i) the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the UK Health Protection Agency (HPA) in establishing advisory limits and action values in their published regulatory guidelines; (ii) the EU Commission as part of the evidential basis in their decision to derogate MRI from the scope of the Physical Agents Directive 2004/40/EC. These decisions have enabled the continued operation of MR scanners across Europe, safeguarding the access to MRI for 500 million people. The economic benefits arising from the manufacture of MRI equipment were also secured. Our work has thus resulted in impact on public policy, the economy and healthcare.
Research carried out by Dr Helen Mason, University of Cambridge, on solar space projects such as SoHO, Hinode and the Solar Dynamics Observatory (SDO), led to increased public interest in astronomy, space science, physics and mathematics, and has inspired school students to study science subjects, which should ultimately enhance the UK's technical and scientific expertise. This impact was achieved via sustained engagement activities including public lectures, work with the media and the Sun|trek project. Sun|trek (www.suntrek.org) is an educational website informed by Dr Mason's research targeted at UK teachers and school students about the Sun and its effect on the Earth's environment. Sun|trek also attracted a large user base in the USA, Australia, India and worldwide.
Recognising a national shortage of young people adopting careers in physics, particularly in Wales, we used our experience in engaging the public with physics research to have an impact on the work of the young people's organisation Urdd Gobaith Cymru at its National Eisteddfod, one of the largest cultural youth festivals in Europe. At the heart of the pavilion, Aberystwyth researchers presented an exhibition of our research on the Sun and the Solar System, supported by the STFC Science in Society scheme. This core activity convinced the organisation to reintroduce a prominent science pavilion (the GwyddonLe), having originally planned not to host a science event. Since 2010, this has grown to be one of the largest and most popular events at the Eisteddfod, attracting external funding and allowing DMAP researchers to have a further impact on society by demonstrating physics to tens of thousands of school children and their parents.
Research in the Department of Electronic & Electrical Engineering at the University of Sheffield has generated economic impact through the creation of a spinout company, Magnomatics Ltd, commercialising high performance electric drives, in particular those employing magnetic gearing technologies. Magnomatics employs 35 full-time staff, had a turnover of £1.4M for the year 2012, and its technologies are now being developed for applications in utility scale wind turbines, hybrid vehicles and marine propulsion.
As standard commercially-available imaging systems were unable to deliver the performance necessary for our astronomy research programmes, we formed a partnership with Andor Technology to develop two new specifically-tailored novel imaging systems: one to allow high-speed, high cadence imaging over an array of detectors whose capture times were precisely synchronised (for solar research); one to combine large format CCD detectors with a thermoelectric deep cooling design, removing the need for a separate, expensive cooling system (for exoplanet research). This partnership contributed to the development of new imaging products within Andor Technology (2008 — present), for which the company estimates a current total revenue value of over £1.7M per year. It has also helped Andor to maintain a leading position in the scientific camera market on a global scale, via the press and industry coverage obtained for the new technology development.
Research at the University of Cambridge, Department of Physics on sensitive techniques for measurements of magnetic and electrical properties of materials led to the selection of Dr Michael Sutherland as an expert witness in a series of major police investigations involving fraudulent bomb detecting equipment. Scientific evidence Dr Sutherland presented in court was key in securing guilty verdicts, leading to the breakup in 2013 of several international fraud rings with combined revenue in excess of £70 million. This criminal activity had caused significant damage to the reputation of the UK in Iraq and elsewhere.
The Space & Atmospheric Physics (SPAT) group's magnetometer laboratory at Imperial has developed a small and lightweight magnetic field instrument intended to be flown on future generations of extremely small satellites or planetary landers. The instrument will be used for planetary research or plasma physics in the space environment, and also has application for attitude determination on satellites in Earth-orbit, by comparison with the geomagnetic field (`digital compass'). In 2010 Imperial Innovations granted Satellite Services Ltd (now the SSBV Aerospace and Technology Group) an exclusive 3-year license to market the design for the commercial satellite sector. Satellite Services have sold seven units (circa. € 10,000 per unit) with further commercial sales anticipated in the coming years. Sales of the device have contributed significantly to SSBV's company turnover, indicating the economic impact of the SPAT group's research.
A device developed for spintronics research at the University of Oxford has been adapted as the basis for robust, high-performance position or composition sensors to detect many different materials including metals, plastics, ceramics and fluids. These sensors are capable of making contactless measurements in very hostile environments. A spin-out company was formed in 2004 to exploit and apply this technology to a wide range of technical and engineering problems and has achieved over £2.5m revenue. These sensors form the key elements of products that have been successfully deployed in automotive and other transport applications. Benefits to end users include ease of use, speed and the cost savings.