Log in
Body Sensor Networks (BSN) research developed novel sensing algorithms and technology suitable for on-body pervasive sensing suitable for healthcare, well-being and sporting applications. The main impact includes:
The development of microelectronic sensor arrays for biological applications, pioneered at the University of Glasgow, is central to a unique gene sequencing system developed by Ion Torrent. The Ion Torrent personal genome machine is a bench-top system that, compared to optically mediated technologies, is cheaper and easier to use. Ion Torrent was founded in 2007 and bought by Life Technologies in 2010 for $725M; they, in turn, were bought by Thermo Fisher for $13Bn, citing Ion Torrent as a motivation. Ion Torrent now has 62% of the bench-top sequencing market, estimated to be worth $1.3Bn in 2012.
Research at the University of Leeds led to the development of UltraCane — an ultrasonic cane for people who are visually-impaired that gives tactile feedback to the user's hand with progressive non-contact warning of obstacles (ground-to-head) up to 4 m. [text removed for publication]. Testimonials from users describe its transformative nature on their quality of life, giving `a true feeling of independence', whilst healthcare professionals commend `the simplicity of operation and ease of use'. Furthermore, with a technology mimicking bat echolocation, the UltraCane has informed and engaged the wider public in science and engineering through, for example, the BBC `Miracles of Nature' series. The technology has also been developed to allow people who are visually-impaired to cycle independently and safely around a cycle track — the `UltraBike'.
Research into industrial process tomography has been performed at the University of Leeds from 1999 to the present day with much of this being in collaboration with Industrial Tomography Systems plc (ITS). This research, together with the associated intellectual property, has provided the foundation of 5 innovative new products developed and produced by ITS during the eligible period. These new products have generated sales of £5m and are in large part responsible for increases in turnover and employment of approximately 60%, and exports of 67% since 2008. These instruments are used in a significant number of new applications and are generating major benefits to end users in the oil and gas, pharmaceuticals, chemicals, consumer products, minerals and food sectors.
Research at the University of Leeds, in partnership with the US company Agilent Technologies, has directly resulted in the development of high performance vector network analyzer instrumentation used by electronics, aerospace and defence companies globally to measure the high frequency properties of electronic devices and materials. University of Leeds research also directly resulted in the development of two further Agilent Technologies products — a high frequency dielectric probe kit and a capacitance scanning probe microscope. Agilent Technologies confirms that the collective sales of these products are in the region of tens of millions of dollars annually since 2008.
This case study relates to research that has had an economic and application impact through the continued operation of a University spin out company, Biox Systems Ltd. The success of the Company's AquaFlux device for measuring aspects of skin barrier performance has, since 2008, resulted in:
Access to AquaFlux has enabled commercial and R&D organisations, including health care, household product and cosmetic industries, to gain better insights into the performance of their products. AquaFlux has been cited as the "gold standard" for Trans-Epidermal Water Loss (TEWL) measurement.
NIBEC connected health related research over the past 20 years has led to three high value spin- out companies. Their success is based on exploitation of over 35 NIBEC patents in medical sensors and electro-stimulation devices. Together these companies are currently valued at almost £100m, employ over 150 skilled people and have engineered medical innovations that have had global beneficial impact on health costs and patients' lives over these past four years. Our research is closely linked with international partners, commercial and clinical, has impacted local government policy through our leadership of the European Connected Health Alliance and has resulted in the £5m industry-focussed Connected Health Innovation Centre established at NIBEC.
The first commercial electronic nose (aka e-nose) instruments were designed, developed and built by researchers in Warwick's School of Engineering in the 1990s, and commercialized by [text removed for publication]
Warwick's patents in chemical sensing also led in 2008 to the creation of a spin-out company, Cambridge CMOS Sensors Ltd (CCS), which provides low-cost low-power gas-sensing technology and is already established in the gas-sensing market.
The smart sensors and instrumentation developed as a result of the pioneering research in artificial olfaction and chemical sensing have had economic impacts across a wide range of sectors, in particular in food quality, healthcare and consumer electronics. The two companies employ around 100 people and the thousands of e-nose instruments sold help quality assurance of foods, beverages and are now being deployed in hospitals for bacterial detection.
New commercial gas sensing technology developed from research at the University of Strathclyde brings extensive technical, operational, safety and cost benefits to applications such as mine safety and leak detection in methane production, storage, piping and transport systems. World-wide commercial sales (in Japan, China and the USA) began in late 2010 through a spin out company, OptoSci Ltd. Sales are growing and have amounted to a total of £250k since launch plus a customisation contract for £193k, leading to jobs sustainability and growth. In addition to economic impacts, the technology also brings health and safety benefits in the gas distribution and mining industries through human safety assurance in the event of gas leaks / build up.
Slope ALARMS is a novel low-cost sensor that detects acoustic emission and warns of the early signs of impending landslides. It has been developed and patented by Dixon at Loughborough University. British, Italian, Canadian and Austrian organizations with responsibility for vulnerable infrastructure have employed Slope ALARMS sensors since 2008 in locations with high landslide risk. Measurements have provided information on displacement rates and this is making a significant contribution to assessment of slope hazards. The invention has won awards and generated interest globally, raising public and professional awareness of landslide problems and the use of Slope ALARMS.