Log in
Southampton researchers have developed, commercialised and applied an array of new technological methods and interpretative approaches for managing the seabed through novel near surface geophysical imaging. This fundamental research has had demonstrable major impacts on areas as diverse as: improving the preservation and management of underwater cultural heritage (through providing direct UK government guidance and advice); enabling the sustainable use of the marine environment for the largest offshore infrastructure developments (including providers of nuclear power, wind power and trans-national energy connectors); enhanced mineral resource exploitation (for The Crown Estate — owners of the marine estate and regulators of the companies that exploit it); providing object detection service and training for the UK armed forces; assisting national and international law enforcement agencies in underwater search; and finally, disseminating these skills through postgraduate education to the UK and overseas marine survey sector.
Research on the distribution, abundance and sensitivity to disturbance of marine predators has been translated into environmental and economic benefits via a series of spin-out companies with a global presence. The research enabled the following impacts:
Direct company earnings were ~£6 million turnover in the assessment period and this supported 24 employees two-thirds of whom are skilled specialists.
The research resulted in primary legislation and provided government with the evidence used when implementing the measures set out within legislation. Specifically, this concerned:
This work, together with connected public outreach, was awarded the Queen's Anniversary Prize in 2011 for excellence in research supporting better governance of the ocean.
This impact study deals with the development and implementation of an internationally recognised, statistically-based sampling regime for marine sediment hydrocarbon contamination. Its Economic and Environmental impacts include a reduction in sampling and analysis costs to operators while maintaining a statistically robust monitoring procedure to protect and enhance the environment (including valuable fisheries) and support oil and gas exploration/production. This regime was initially adopted by the UK Government in the UK Marine Monitoring and Assessment Strategy in 2009. These statistical-based sampling protocols have subsequently passed into wider environmental policy and the Random Stratified Statistical Sampling Regime represents the accepted standard for marine monitoring in the £22 billion oil exploration and production industry in the UK Continental Shelf. This regime has now been taken-up internationally by the other 14 countries bordering/discharging to the North East Atlantic through the OSPAR Convention for the Protection of the Marine Environment of the North East Atlantic.
Research on the status, distribution and ecology of sea turtles at the University of Exeter has driven national and international conservation policy, engaged millions of people worldwide and raised substantial funding for conservation. Governments including the UK, Cayman Islands, Cyprus and Gabon have used this research in making legislation and multi-million pound management decisions. Development of open-access animal tracking tools has facilitated a global network of over 135 countries, with more than 300 projects tracking thousands of animals from 118 species. The ability to adopt tracked animals online has attracted millions of visitors and raised funding for conservation projects world-wide.
Achievement of energy security and the UK's 2020 carbon targets economy depends upon a mix of new offshore oil and gas and renewable energy developments, but concern that seismic survey and construction noise could pose an unacceptable risk to marine mammals threatens to delay these plans.
University of Aberdeen ecologists, under the direction of Paul Thompson, have developed long-term studies of marine mammal population dynamics that now underpin frameworks for assessing and mitigating the impacts of such developments on marine mammals in EU protected areas.
The specific impact on commerce and the environment is that this assessment process has been adopted by industry within their consent applications. As a result of academic consultancy in industry, planning decisions have been informed by the research, and the management of environmental risks has changed. This has reduced the consenting risk for industry and provided an assessment framework that allows regulators to ensure that they are implementing current government policy within international legal frameworks for environmental protection.
Research into 3D visualisation of shipwreck sites with historical significance or that pose a threat to the environment e.g. Costa Concordia, Deepwater Horizon, has led to multiple impacts:
The research also led to the formation of a University spin-out company (ADUS) which surveys and visualises shipwrecks with great detail and accuracy. This informs critical decision-making during salvage, wreck removal and environmental clean-up operations.
Researchers at the University of St Andrews have changed the way environmental monitoring and impact assessment data are collected and analysed, particularly in the marine environment. We have developed new statistical models of wildlife population dynamics that, for example, form the basis for population assessment of most of the world's grey seals, allowing the UK and Canadian governments to implement effective management of the populations. Other research carried out by us has led to reformulation of the recommended standard statistical practice for impact assessment in the UK marine renewables industry, enabling marine regulators such as Marine Scotland to make better-informed licensing decisions concerning large-scale offshore renewable energy developments.
Research by St Andrews scientists studying the effects of naval Sonar on marine mammals has had the following international impacts:
The International Centre for Island Technology (ICIT) based at Heriot-Watt University's Orkney campus is a multi-disciplinary research team whose focus for over a decade has been research into the socio-economic and environmental barriers to the development of marine renewable energy, particularly in the Pentland Firth and Orkney Waters (PFOW) area and its establishment as a Marine Energy park. This has enabled 1.2GW of marine energy leases by the Crown Estates including an estimated £3billion of related capital investment, as well as the establishment of the European Marine Energy Centre (EMEC), which continues to maintain its impact on the development of marine renewable energy.
Research at the International Centre for Island Technology at Heriot-Watt University has led to a substantial boost to Orkney with £8.8m in Gross Value Added to the local economy, with the creation of 119 jobs (Biggar Economics, 2012) through a dozen spin-out companies.