Similar case studies

REF impact found 15 Case Studies

Currently displayed text from case study:

Modelling the evolution of a bio-based economy in the Humber region

Summary of the impact

Industrial regions around the UK are seeking to develop bio-based economies in order to minimise their CO2 emissions and stimulate economic regeneration.

Researchers at Surrey, in collaboration with key industrialists from the Humber region, have produced a mathematical model of the main factors influencing the transition to, and establishment of, a bio-based economy. This model has been used by the Humber Environmental Managers (HEM) group, and the Humber local authorities to help guide strategic planning for the region. The outcome is that the research has contributed to environmental improvement and economic regeneration of the Humber region, and has indirectly impacted on public policy.

Submitting Institution

University of Surrey

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Economics: Applied Economics

Advancing the application of mathematics and statistics in the medical and biological community

Summary of the impact

Research at The University of Nottingham's (UoN) Centre for Mathematical Medicine and Biology (CMMB) has informed a wide array of beneficiaries including public policy-makers, clinicians and industry in biomedical fields such as cancer and hospital infections. Through a wide range of mechanisms such as Study Groups, training, outreach and user-engagement, the CMMB has established an outstanding track record of furthering the use of mathematics and statistics to address medical and biological problems.

Submitting Institution

University of Nottingham

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Health

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics

Flood risk management is strengthened across the world as a result of inundation models developed at Bristol

Summary of the impact

A two-dimensional flood inundation model called LISFLOOD-FP, which was created by a team led by Professor Paul Bates at the University of Bristol, has served as a blueprint for the flood risk management industry in the UK and many other countries. The documentation and published research for the original model, developed in 1999, and the subsequent improvements made in over a decade of research, have been integrated into clones of LISFLOOD-FP that have been produced by numerous risk management consultancies. This has not only saved commercial code developers' time but also improved the predictive capability of models used in a multimillion pound global industry that affects tens of millions of people annually. Between 2008 and 2013, clones of LISFLOOD-FP have been used to: i) develop national flood risk products for countries around the world; ii) facilitate the pricing of flood re-insurance contracts in a number of territories worldwide; and iii) undertake numerous individual flood inundation mapping studies in the UK and overseas. In the UK alone, risk assessments from LISFLOOD-FP clones are used in the Environment Agency's Flood Map (accessed on average 300,000 times a month by 50,000 unique browsers), in every property legal search, in every planning application assessment and in the pricing of the majority of flood re-insurance contracts. This has led to more informed and, hence, better flood risk management. A shareware version of the code has been available on the University of Bristol website since December 2010. As of September 2013, the shareware had received over 312 unique downloads from 54 different countries.

Submitting Institution

University of Bristol

Unit of Assessment

Geography, Environmental Studies and Archaeology

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Engineering: Geomatic Engineering

Fluid Modelling - Expertise and Software

Summary of the impact

Fluid modelling approaches devised by the Materials and Engineering Research Institute's (MERI's) materials and fluid flow modelling group have impacted on industrial partners, research professionals and outreach recipients. This case study focuses on economic impacts arising from improved understanding which this modelling work has given of commercial products and processes. These include: metal particulate decontamination methods developed by the UK small company Fluid Maintenance Solutions; liquid crystal devices (LCDs) manufactured by the UK SME ZBD Displays; and an ink-droplet dispenser module originally invented at the multinational Kodak. Additionally, the modelling group's computer simulation algorithms have been adopted by industrial research professionals and made available via STFC Daresbury's internationally distributed software package DL_MESO. Finally, the group has developed, presented and disseminated simulation-based materials and visualisations at major public understanding of science (PUS) events.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Chemical Engineering, Interdisciplinary Engineering

Decomposition, defect correction, and related numerical methods

Summary of the impact

Spatial decomposition methods have been extended to apply to spatial, scale, and temporal domains as a result of work at the Numerical and Applied Mathematics Research Unit (NAMU) at the University of Greenwich. This work has led to a numerical framework for tackling many nonlinear problems which have been key bottlenecks in software design and scientific computing. The work has benefitted the welding industry in the UK because these concepts are now embedded, with parallel computing, in the industry's modern welding design process software.

Submitting Institution

University of Greenwich

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics, Applied Mathematics, Numerical and Computational Mathematics

1. Mathematics and Healthcare: Saving Lives and Reducing Costs

Summary of the impact

Research conducted at the School of Mathematics at Cardiff University has engineered lifesaving, improvements to UK healthcare systems. New mathematical models, accounting for the complexity and diversity of the health system, have been created and applied in a variety of contexts to markedly enhance the efficiency and effectiveness of a wide range of healthcare services — at policy, commissioning and operational levels. The extensive benefits include:

  • Reducing the mortality of trauma patients across South London by 54% (equating to 0.7 additional survivors out of every 100 patients for the period 2010-2012, rising to 4.2 in 2013)
  • Reducing the mortality of stroke patients across South London by 60% through the creation of a new Stroke Unit, based on the research findings (the services were rated as the best in the country by the National Sentinel Audit 2010 organised by the Royal College of Physicians).
  • Realising net efficiency gains of £1.6m per year in the emergency department at University Hospital of Wales;
  • Provision of hospital capacity planning tools in use across the UK

This work has been disseminated nationally and internationally, in the media and at a range of events designed to engage the public with Mathematics. Therefore the impacts claimed in this case study are health, economic benefits and public engagement.

Submitting Institution

Cardiff University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Health

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Statistics
Economics: Applied Economics

Establishing a Systems Biology approach to drug discovery and therapy design: Physiomics Plc

Summary of the impact

Steered by Professor David Fell of Oxford Brookes University, Physiomics plc, an Oxford-based biotechnology innovation company has, since 2008, firmly established itself as a leading light in systems biology approaches to drug discovery and latterly in therapy design, demonstrable through contracts with three major international pharmaceutical companies. Through its strong advocacy of this approach the sector has invested in and adopted new computational biology processes. As Physiomics has continued to grow, it has expanded its own specialist research team, in many cases recruiting scientists trained within Fell's Brookes-based research group.

Submitting Institution

Oxford Brookes University

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Biological Sciences: Biochemistry and Cell Biology, Genetics

C10 - Forecasting Ocean Oil Spill movements, facilitating Oil Spill clean-ups

Summary of the impact

In the 1990s Dr D Moore, who has extensive experience in fluid dynamics, worked with collaborators at the US Naval Research Laboratory (NRL) on parallelising an ocean modelling code. This resulted in the Navy Layered Ocean Model (NLOM) and later the Hybrid Coordinate Ocean Model (HYCOM). NLOM and HYCOM, which were/are distributed through the NRL and HYCOM consortium, are open access ocean modelling codes that are used to forecast ocean currents. They have proved particularly impactful for the forecasting of ocean oil spills and the corresponding management of the environmental risk. NLOM and/or HYCOM have been used extensively in the Deepwater Horizon oil spill in 2010 as well as the Montara Well Release oil spill in Australia in 2009, providing valuable forecasts to assist with the response to the disasters.

Submitting Institution

Imperial College London

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Environmental

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Computation Theory and Mathematics
Technology: Computer Hardware

Cancer Research

Summary of the impact

Cancer research at the University of Salford focuses on developing new and improved treatments for cancer, particularly for children with cancer, demonstrating the following impact:

  • The development of RH1, a novel anticancer drug and a second generation novel agent, Es5, arising from RH1;
  • Participation in clinical studies in paediatric and adult cancers with North West, UK and international partners in the health, charitable and commercial sectors to trial and develop the technologies;
  • The establishment of spin-out company, Onco-NX to develop and exploit the technologies and IP arising from the research;
  • The establishment of Kidscan, a University-based registered charity to support research into new and improved treatments for children with cancer and generating dedicated support for and commitment to cancer research among North West UK communities.

Submitting Institution

University of Salford

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Immunology, Oncology and Carcinogenesis, Pharmacology and Pharmaceutical Sciences

Development of an anti-hCGß cancer vaccine for the treatment of bladder cancer and other hCG/hCGß secreting tumours.

Summary of the impact

Our research has underpinned the work of Celldex Therapeutics and other US based companies, in developing a vaccine directed against hCGβ for the adjuvant treatment of epithelial cancer. A number of Phase I trials indicated an improvement in survival of vaccinated patients and Phase II trials began for bladder cancer where early data showed promise by improving the survival time. This has had a significant impact on these patients, and has the potential to extend the life of many millions of cancer sufferers (around 32% frequency of hCGβ secretion by carcinomas). Our research input has helped prove the technology and further trials are awaiting finance.

Submitting Institution

Middlesex University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

Filter Impact Case Studies

Download Impact Case Studies