Log in
The university's Pharmacy and Pharmacology unit has developed and validated novel in silico and in vitro/ex vivo models for use by the pharma industry to select drug candidates, optimise formulations, determine the posology for clinical trials and show bioequivalence. This resulted in: the approval of two products for actinic keratosis (Picato® and Zyclara®); a generic nail formulation approved for use based on the demonstration of equivalence using the in vitro/ex vivo models described with no clinical testing (the first time this has occurred); and the translation and commercialisation of two dermal drug delivery-based patented technologies (licensing deals with Sinclair IS and major pharmaceutical companies).
Research at the University of Sheffield developed pharmacokinetic tools that enable prediction of drug absorption, distribution, metabolism and excretion, and potential drug-drug interactions. In 2001 the University created a spinout company, Simcyp Ltd, to commercialise the technology. The impacts are:
Edinburgh Napier University is internationally recognised for its research into the mechanisms that drive the adverse health effects of inhaled particles. Pharmaceutical company GlaxoSmithKline (GSK) required early understanding of the likelihood that inhaled drug particulates, used in the treatment of asthma, would evoke an adverse biological response, thus compromising the development of any novel drug. Through collaboration, via a Knowledge Transfer Partnership (KTP), we were able to develop improved in vitro methodologies to study toxicity and, thus, predict pathologies reported in vivo with the aim of reducing both the use of animals and pre-clinical drug attrition.
All new drugs are required to undergo cardiac safety testing to avoid dangerous side effects on contractility and excitability. Of particular concern is the risk of developing a lethal arrhythmia from inhibition of hERG (human Ether-à-go-go-Related Gene) potassium channels. The Bristol laboratory of Professor Hancox and colleagues demonstrated the utility of hERG-transfected mammalian cell lines for investigation of hERG-related effects and risk. Now most drug discovery programmes utilise hERG screens as part of an integrated assessment of cardiac risk (as recommended by the FDA and MHRA). Second, their work linked hERG inhibition to cardiac risk for certain psychotropics (and other agents) that have been either withdrawn or now carry warnings as to their cardiac safety.
Drug development is a highly regulated environment. Identifying the need for an independent, academic-led centre of excellence in research and training of pharmacokinetics, we established the Centre for Applied Pharmacokinetic Research (CAPKR) to engage in problems of generic interest to the Pharmaceutical Industry. CAPKR has been highly influential by informing regulatory practice in Europe and the USA, by establishing and optimising industrial practices related to drug development, particularly those related to drug-drug interactions, by reducing the usage of animals in research and by allowing the commercial development and extensive use of simulation software tools for quantitative prediction of pharmacokinetics in order to improve patients' safety.
Labelled compounds form an essential part of drug discovery and development within the pharmaceutical industry. Novel iridium catalysts, developed by Kerr at WestCHEM since 2008, have introduced a step-change in the ability to label pharmaceutical candidate compounds with radioactive (tritium) or non-radioactive (deuterium) isotopes.
The catalysts are applicable to specific types of compounds that comprise approximately one-third of all drug candidates. Advantages of the catalysts include greater efficacy (less catalyst needed and higher yield of labelled product, giving cost savings), greater speed (efficiency savings), and a significant decrease in radioactive waste compared with previous methods (environmental and safety benefits).
Even since 2008, their adoption within the pharmaceutical industry has been extremely rapid; e.g., the multinational pharmaceutical company AstraZeneca now applies the Kerr methodology to 90% of their relevant candidate compounds. Additional impact has been achieved by Strem Chemicals who have been manufacturing and marketing the catalysts worldwide since October 2012. Even in that very short period, multiple sales have been made on three continents providing economic benefit to the company.
A routine test to screen for patients genetically disposed to serious side effects from treatment with thiopurine drugs has been widely adopted following research by the Academic Unit of Clinical Pharmacology at the University of Sheffield. The test has spared patients painful and potentially life-threatening sepsis, and saved the considerable associated treatment costs which have been estimated to be over £9,000 per patient for a 17 day hospital stay. It has also led directly to a change in clinical guidelines and recommendations in both the USA and UK.
The Abraham solvation parameter approach developed at UCL has become integral to the work carried out by drug discovery teams at [text removed for publication] and other major pharmaceutical companies, as well as research and development groups at international chemical companies including Syngenta and [text removed for publication]. It enables chemists to predict physicochemical and biochemical properties of chemicals, including drugs and agrochemicals, rapidly and efficiently, without the need to conduct time-consuming experiments. The method helps drug discovery teams to identify and optimise the most promising compounds, and often results in fewer compounds being made before a candidate is selected, saving time and resources. The approach has been integrated into software used for drug discovery [text removed for publication].
Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.
Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.