Similar case studies

REF impact found 50 Case Studies

Currently displayed text from case study:

Ultra scale-down technologies for speeding routes to bioprocess manufacture

Summary of the impact

UCL's creation of ultra scale-down (USD) technologies has led to economic benefits by speeding to manufacture next-generation healthcare products. This has resulted in documented savings for pharmaceutical companies in pilot-scale studies (eg ~£280k for a protein therapy) and in manufacturing cost-of-goods (eg ~£200k pa for an antibody). Licensing values realised for USD-facilitated manufacturing processes range from a £10m early-stage payment for an antibody therapy [text removed for publication] to US$1bn for a therapeutic vaccine.

Since 2008 some 40 companies have used UCL USD technologies, which have now also facilitated the formation of a spin-out company and additional job creation. Patient benefits have emerged through the contribution of USD to better bioprocess definition, with USD technologies now helping deliver the US Food and Drug Administration's Quality by Design initiative for biopharmaceuticals, valued at more than US$20bn a year through a 25% reduction in time-to-market and more robust manufacture.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering
Medical and Health Sciences: Neurosciences

BRITEST – Best Route Innovative Technology Evaluation and Selection Techniques

Summary of the impact

BRITEST is a global leader in the development of innovative process solutions for the chemical processing sector with > £500m of value being realized since 2008. Research in Manchester (1997-2000) generated a set of novel tools and methodologies which analyse chemical processes to identify where and how process improvements could be made. BRITEST was established in 2001 as a not-for-profit company to manage the technology transfer and effective deployment of these tools and methodologies into industry. Manchester holds the IP arising from the underpinning research and has granted an exclusive license to BRITEST for use and exploitation of the toolkit.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

1. Enabling the cost-effective and environmentally friendly production of Perspex

Summary of the impact

Cardiff University, through developing and patenting a commercially viable synthetic route to a catalyst, has enabled the application of a new process, the Alpha Process, for the production of methyl methacrylate (MMA), a key commodity precursor to Perspex. The Alpha Process has had economic and environmental impacts.

Lucite International, the world's leading MMA producer, has invested in major Alpha Process production facilities in Singapore and Saudi Arabia, benefitting from a production route which is more efficient, more reliable and cheaper than conventional routes.

The Alpha Process also brings environmental benefits, as it does not rely on the use of corrosive and toxic feedstocks, such as hydrogen cyanide, which are associated with conventional MMA processes.

Submitting Institution

Cardiff University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

The Impact of Physical Organic Chemistry Research at Huddersfield

Summary of the impact

University of Huddersfield research in physical organic chemistry has delivered economic, industrial and societal benefits. It has led to process improvements in chemical manufacturing, most notably in the optimisation of the synthesis of antisense oligonucleotides and in the use of liquid ammonia as a solvent. It has also led to the development of new inhibitors of bacterial β-lactamases for use as antibacterials. The research team's expertise has been reflected in the success of IPOS (Innovative Physical Organic Solutions), a unit established in 2006 to carry out research in process and other areas of chemistry for the chemical industry. IPOS expanded significantly from 2009 to 2013 and has now collaborated with more than 150 companies, many of them based in Yorkshire/Humberside where regeneration is critically dependent on the success of new, non-traditional, high-technology firms and industries. Through these collaborative projects, IPOS has contributed to the growth and prosperity of both regional and national industry.

Submitting Institution

University of Huddersfield

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

Adoption of new management tools within global engineering networks

Summary of the impact

Key findings from Dr Zhang's research at Birmingham Business School into global engineering networks (GEN) have been adopted by some of the largest manufacturing firms in the UK, leading to measureable improvements in the effectiveness and efficiency of their engineering functions. The programme of research combines engineering, technology and process management and wider insights from organisation studies to develop decision-making tools for firms. One important route for disseminating GEN research findings to industrial audiences has been the High Performance Engineering Forum; member companies of the Forum have achieved tangible benefits from application of the approach including reduced engineering expenses, improved communication, support for novel working approaches and the introduction of innovative business initiatives. Users cite the benefits of these tools in support of the formation and implementation of global engineering strategies and improved communication between operations at different stages of the engineering value chain. There is also evidence of wider impact in terms of the increased awareness of the need to combine engineering and technology-related expertise with innovation management capabilities and knowledge of the changing international landscape. The research focuses on emerging competitors, growing markets and potential collaborations, particularly in, from, or with China. These have significant implications for current manufacturing business models in the UK. The GEN framework has also been adopted as an essential input for the Excellence Engineering Education System in China co-developed by the Chinese Academy of Engineering, Cambridge University and Tsinghua University, and intended to provide a novel framework for Chinese engineering education.

Submitting Institution

University of Birmingham

Unit of Assessment

Business and Management Studies

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Commerce, Management, Tourism and Services: Business and Management

Supercritical Fluids – Critical Pharmaceuticals Ltd (CS1)

Summary of the impact

The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Engineering: Biomedical Engineering

T: Commercialisation of ScreenTape™ - a microfluidic tool for genomics, next-generation sequencing and proteomic analysis

Summary of the impact

Impact: New business, technology, intellectual property and employment resulting from the invention and exploitation of a micro-scale laboratory device (ScreenTapeTM).

Significance: New business and technology commercialised resulting in sales of novel products worldwide, acquisition by Agilent Technologies Limited (Agilent) for £[text removed for publication] in 2011, product sales of over £[text removed for publication] to August 2013, generation of sustained employment for 50-160 people, major inward investment (£6M) by local investors followed by a US multinational.

Beneficiaries: The economy, commerce, employment, research and diagnostic laboratories, Agilent Technologies Inc. (Agilent).

Attribution: UoE Prof Peter Ghazal and Dr Douglas Roy inventors on granted patent, establishment of multi-disciplinary research in biochip medicine, collaborators with ex-Motorola engineers, co-founders of spin-out company for commercialisation of intellectual property.

Reach: Worldwide, including employment and product sales. Inward investment to UK.

Submitting Institution

University of Edinburgh

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Biological Sciences: Genetics
Information and Computing Sciences: Artificial Intelligence and Image Processing

Enval

Summary of the impact

Research conducted at the University of Cambridge under an EPSRC grant between 1999 and 2002 established the viability of using microwave induced pyrolysis as a process for recovering clean, elemental aluminium and hydrocarbon liquids and gases from waste laminate packaging, thus preventing the need to send this material to landfill. The research has been commercialised by Enval Limited — a multi-award-winning University spin-off founded in 2006 that has attracted approximately £2M funding during the REF period and employs 7 people. A pilot scale unit has been operational since 2011, and the first commercial-scale unit has been constructed and has operated since April 2013.

Submitting Institution

University of Cambridge

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Environmental Engineering, Materials Engineering

Systems engineering and project management training improving the performance of organisations

Summary of the impact

The Technology Management Group (TMG) in the Department of Space and Climate Physics (also known as the Mullard Space Science Laboratory, or MSSL) at UCL has developed a range of professional training courses for industry that promote a forward-looking approach to the management of technology projects. Industrial customers have invested almost £2.4 million on the training within the REF impact period, greatly valuing its impact in helping their staff deal with the challenges of modern, complex projects, such as achieving high reliability in network-enabled systems that need to perform in the harshest environments. The training has improved engineering capability and organisational effectiveness for its customers, helping them to deliver excellent performance — to budget, on time and with the quality and functionality required. The TMG has also contributed to a systems engineering competency framework that is being used worldwide in the professional certification of systems engineers.

Submitting Institution

University College London

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computer Software
Economics: Applied Economics

C1 - The Founding of Argenta Discovery and Pulmagen Therapeutics

Summary of the impact

The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

Filter Impact Case Studies

Download Impact Case Studies