Log in
Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.
The transition, at the end of the 20th century, from ozone-depleting chlorofluorocarbons (CFCs) to hydrofluoralkane (HFA) propellants in metered dose inhalers (MDIs), for drug delivery to the upper airways in the lungs, taxed the ingenuity of formulation scientists and device design engineers. The regulatory requirement for clinical equivalence between the CFC and HFA products demanded an unchanged drug dosing regimen and identical lung deposition profiles.
Research funded by Chiesi Farmaceutici (Parma, Italy) in the Centre of Drug Formulation Studies (CDFS) at the University of Bath led to development of the Modulite® technology which met the challenges posed and mimicked the performance of CFC MDI using HFA propellants. The proprietary technology enabled Chiesi to re-formulate and commercialise a number of products, which now represent mainstay therapies in the treatment of asthma and chronic obstructive pulmonary disease (COPD).
The Modulite® technology has provided the greatest contribution to both the turnover and the global development of the Chiesi group, via several successful in-house developmements and collaboration agreements with leading pharmaceutical companies. Global sales of Chiesi's Atimos Modulite®, Fostair/Foster (25% of sales) and Clenil Modulite® (14.4% of sales) MDI products produced revenue of in excess of $450 Million in 2012.
Research by the School of Pharmacy played a key role in the 2008 regulatory approval of Janssen Pharmaceutica's HIV drug Intelence®. As a poorly soluble drug, Intelence® required specialist formulation and was the first formulation of its type to be approved by the FDA and EMA. Intelence® offers significantly improved clinical outcomes due to its efficacy in patients with HIV resistance. Global Intelence® sales in 2012 were $349M, with additional not-for-profit supplies to resource-limited countries. As a result of this landmark regulatory approval formulation development strategies at Janssen were adapted enabling a further poorly soluble drug to reach the market. Telaprevir, a second-generation Hepatitis C treatment (marketed as Incivek®, Incivo® & Telavic®), gained global regulatory approval in 2011. 2012 sales exceeded $1bn in the US alone.
ProTide technology, discovered by the McGuigan team at Cardiff University, is a pro-drug strategy with proven capacity to generate new drug candidates for nucleoside-based antiviral and anti- cancer indications. In the assessment period the McGuigan team has attracted more than £2 million direct research funding through sustained collaborations on ProTide technology with global pharmaceutical companies and smaller biotech firms in the USA and Europe. In the same period, either through working directly with Cardiff or by independent adoption of McGuigan's research, eight ProTide entities have progressed to clinical trials as cancer, HIV and hepatitis C treatments. The technology is demonstrating significant commercial impact for companies with ProTide-based drug candidates.
Nearly all solid dosage forms contain drugs in crystalline form; and all crystals have the potential to `morph', suddenly, into different forms which can affect the safety and efficacy of the medicinal product. A number of high-profile cases in which marketed medicines had to be withdrawn [Lee, et al., Annu. Rev. Chem. Biomol. Eng. 2011, 2, 259-280] led multinational drug company Pfizer to conclude that a greater understanding of polymorphism was required to enable drug product design for the 21st Century. The University of Greenwich pioneered methods to predict crystal behaviour on the shelf and during manufacture that were affordable, timely and effective. It enabled Pfizer to select the optimal polymorphic drug form and manage risk associated with uncontrolled solid-state transformations, thereby safeguarding patients and avoiding huge costs.
Edinburgh Napier University is internationally recognised for its research into the mechanisms that drive the adverse health effects of inhaled particles. Pharmaceutical company GlaxoSmithKline (GSK) required early understanding of the likelihood that inhaled drug particulates, used in the treatment of asthma, would evoke an adverse biological response, thus compromising the development of any novel drug. Through collaboration, via a Knowledge Transfer Partnership (KTP), we were able to develop improved in vitro methodologies to study toxicity and, thus, predict pathologies reported in vivo with the aim of reducing both the use of animals and pre-clinical drug attrition.
Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.
Research at the University of Sheffield developed pharmacokinetic tools that enable prediction of drug absorption, distribution, metabolism and excretion, and potential drug-drug interactions. In 2001 the University created a spinout company, Simcyp Ltd, to commercialise the technology. The impacts are:
Drug development is a highly regulated environment. Identifying the need for an independent, academic-led centre of excellence in research and training of pharmacokinetics, we established the Centre for Applied Pharmacokinetic Research (CAPKR) to engage in problems of generic interest to the Pharmaceutical Industry. CAPKR has been highly influential by informing regulatory practice in Europe and the USA, by establishing and optimising industrial practices related to drug development, particularly those related to drug-drug interactions, by reducing the usage of animals in research and by allowing the commercial development and extensive use of simulation software tools for quantitative prediction of pharmacokinetics in order to improve patients' safety.
A routine test to screen for patients genetically disposed to serious side effects from treatment with thiopurine drugs has been widely adopted following research by the Academic Unit of Clinical Pharmacology at the University of Sheffield. The test has spared patients painful and potentially life-threatening sepsis, and saved the considerable associated treatment costs which have been estimated to be over £9,000 per patient for a 17 day hospital stay. It has also led directly to a change in clinical guidelines and recommendations in both the USA and UK.