Log in
A novel large-area process-based crop simulation model developed at the University of Reading and published in 2004 has been used to explore how climate change may affect crop production and global food security. The results of Reading's modelling work have been used as evidence to support the case for action on climate change for international agreements and used by the UK Government to inform various areas of policy and, in particular, to help frame its position on climate change at international negotiations. The database and knowledge from this model also informed the development of Reading's innovative web-based tool that locates sites where the climate today is similar to the projected climate in another location - providing insight into potential adaptation practices for crop production in the future by linking to present-day examples. This tool has been used to inform and train farmers and policy-makers in developing countries and has supported policy implementation of the International Treaty on Plant Genetic Resources for Food and Agriculture.
University of Nottingham (UoN) research into optimum plant populations and lodging in wheat has led to advances in agronomic practices for winter wheat in the UK, in particular changes in the way that seed rates are calculated (by number, rather than weight) to establish optimum plant populations. Most significantly, growers and agronomists now have an improved understanding of the crop characteristics that affect wheat lodging risk and have made changes to crop management to minimise the problem. This has led to reduced incidence of lodging in the UK, thereby protecting yield and quality of UK's most important arable crop.
1) Influence on research figuring in the present Assessment Report (AR5) of the IPCC
2) Influence on public understanding of climate change
Reliable seed performance is the cornerstone of crop establishment, an important trait that determines the cost and resource efficiency of crop production. In practice, seed performance varies, and this creates a substantial global problem for seed producers and farmers. From 1980 until the present time, Finch-Savage and Rowse have provided knowledge, patented techniques and genetic backgrounds from their research programmes to enhance the performance of seeds in crop production. Seed production businesses worldwide use and continue to adopt these techniques. These include both national (e.g. Elsoms Seeds, UK; Seed Enhancements, New Zealand) and global (e.g. Syngenta and Bayer) companies. Therefore, the work of Finch-Savage and Rowse has had, and continues to have, a direct impact on food security, sustainable crop production and the profitability of farming and seed production businesses.
Impact: Economic: The first fungicide-based control schemes minimising UK barley yield losses (saving approx. 516K tonnes / £95.1M per annum). A risk assessment method, which minimised pesticide usage.
Significance: Barley is the second most popular cereal crop grown in the UK — in 2012, 5.52 million tonnes of barley were grown (market value £1.02 billion). The research led to savings to the UK farming industry of ~£5.4 million per annum
Beneficiaries: Farmers, malting and brewing industries, UK tax revenue.
Attribution: Drs. Oxley, Havis, Hughes, Fountaine, and Burnett (SRUC) identified the pathogen and produced a field test for early identification of infestation.
Reach: Barley growing, malting and brewing sectors, seed and agrochemical industries UK-wide and in Ireland.