Similar case studies

REF impact found 47 Case Studies

Currently displayed text from case study:

Research into trimaran hullforms exploited in novel ship designs by commercial and naval shipping

Summary of the impact

A number of trimaran ocean-going ships, based on original designs conceived by UCL researchers, are currently in use. RV Triton, the demonstrator trimaran, is presently employed as a patrol vessel to provide Australian Customs and Border Protection with increased capability and lower fuel consumption compared to a monohull. The Independence Class of littoral combat ships currently entering service in the US Navy offers improved military capability and one-third lower fuel consumption, with the ensuing benefit of creating almost 2,000 jobs at the shipbuilder, Austal. Similarly, trimaran ferries with their inherent stability have improved passenger comfort and their reduced fuel consumption has lowered operating costs.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Maritime Engineering

Advances in Physical Vapour Deposition based on High Power Impulse Magnetron Sputtering (HIPIMS)

Summary of the impact

Ehiasarian and Hovsepian of the Materials and Engineering Research Institute (MERI) have achieved significant economic impact through industrial uptake of their innovations in High Power Impulse Magnetron Sputtering (HIPIMS). Exploiting these innovations, HIPIMS treatments have been used by manufacturers to enhance the surface properties of millions of pounds worth of products. Applications include industrial blades, components within jet turbines, replacement hip joints, metallised semiconductor wafers and satellite cryo-coolers. Patents based on Ehiasarian and Hovsepian's research have achieved commercial success. In the REF impact period, HIPIMS machines equipped to deliver MERI''s HIPIMS surface pre-treatment have achieved sales of over £5m, and income generated through SHU's HIPIMS-related licences has totalled £403,270. In 2010 Ehiasarian's group established the Joint Sheffield Hallam University-Fraunhofer IST HIPIMS Research Centre, the first such Centre in the UK. This has broadened the industrial uptake of MERI's HIPIMS technologies and stimulated a network of sub-system providers.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Engineering: Materials Engineering

Light-weighting of automotive and aerospace transport

Summary of the impact

The automotive and aerospace industries are keen to reduce their environmental impact and so have looked to move to lightweight materials. This creates issues in terms of joining, using and disposing of dissimilar materials. Oxford Brookes has therefore worked with national and multi-national companies in the adhesive, materials, automotive and aerospace industries to try to solve these problems. This has resulted in high quality research publications, innovative test equipment, improved numerical methods, novel designs, design guidelines, manufacturing procedures, British Standards, patents, commercial products and further funding. The impact of the work has global safety, environmental and economic benefits with multi-national aerospace and automotive companies implementing the results in current developments.

Submitting Institution

Oxford Brookes University

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Aerospace Engineering, Civil Engineering, Materials Engineering

Bio-based Materials in Construction: development and impact of prototype test buildings BaleHaus and HemPod

Summary of the impact

Over the past 13 years the University of Bath has been leading research into low-impact bio-based construction materials, including the construction and testing of two full-scale prototype buildings: BaleHaus (2009) and HemPod (2010) built on campus. The research has directly promoted: the development and wider market acceptance of award winning low carbon construction products (ModCell® and Hemcrete®); successful delivery of award winning buildings; and the wider sector uptake of these technologies, including in a new school building in Bath. The work has directly benefited industry partners working to meet UK Government policy requirements to deliver low carbon infrastructure and benefited society through the delivery of affordable sustainable buildings.

Submitting Institution

University of Bath

Unit of Assessment

Architecture, Built Environment and Planning

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering
Built Environment and Design: Engineering Design, Other Built Environment and Design

Dezineforce - pioneering cloud computing

Summary of the impact

Cloud computing is now used ubiquitously in consumer and commerce domains yielding unprecedented access to computing and data handling at affordable prices.

Work in this field was pioneered at the University of Southampton (UoS) from 1998 onwards and commercialised from 2008 through Dezineforce to enable companies to exploit cloud computing in engineering:

  • The technology was applied in industries including aerospace and defence, energy, civil engineering and automotive.
  • For small companies, we successfully demonstrated access to computing power and enhanced design tools delivered via the Cloud. e.g. Intelligent Flow Solutions used our tools to develop an innovative Wind Turbine Farm design with an increased lifetime return of over €55 million compared to alternative arrangements.
  • Large companies benefited from more efficient ways of collaborative working and advanced design search/optimisation technologies, which had not been possible before. For example Arup achieved a £1 million+ figure saving on a stadium design in the Middle East.
  • The IP was sold to Microsoft in 2011 with staff moving to roles in Microsoft's Azure Cloud/senior teams.

Throughout this period the team has also engaged in outreach to inspire and educate the next generation of scientists and engineers about High Performance and Cloud computing including a YouTube video with 485,000 hits and over 300 articles in media.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Computer Software, Distributed Computing

Improved efficiency and design practice in European maritime industry

Summary of the impact

The impact relates to improved productivity, operational efficiency, working practice and knowledge management within the European maritime industry through the use of a Virtual Integration Platform (VIP). The platform is a software package developed within the University of Strathclyde that has been used by eleven European ship design, engineering and project management consultancies, which specialise in the application of advanced computational design, analysis and physical modelling techniques within projects on an international scale. Specific company benefits of using the VIP include: 67% reduction in process time; guaranteed data consistency; additional productivity of 15 hours/day from automated over-night operation; capturing and reuse of expertise; cost effectiveness (lack of data consistency typically costs €100k per project); and ease of operation within complex design processes.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems
Built Environment and Design: Design Practice and Management

The user- centred management of innovation in two SMEs

Summary of the impact

Green and Lilley's research on the management of innovation within creative organisations, with a specific focus on people-centred and socio-technical systems design of digital technology, has benefitted two companies significantly through two knowledge-transfer partnerships. One company — Bulb - more than doubled its staff numbers from 8 to 18 and increased turnover from £700,000 to £1.2 million. This research contributed to the basis for a new company — CrowdLab - now worth £1.5 million. Both companies have been short-listed for a number of awards, one recently winning the 2013 Leicester Mercury Innovative Company category. The School has embraced the University's Knowledge Exchange provision to respond effectively to the Government's economic development agenda which has placed HEIs `centre stage' to deliver private-sector led innovation and economic recovery.

Submitting Institution

University of Leicester

Unit of Assessment

Business and Management Studies

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Information Systems
Commerce, Management, Tourism and Services: Business and Management

16 - Hand-tool Vibration Monitor Improves Health and Safety of Construction Workers

Summary of the impact

As 288,000 UK construction workers were estimated to have contracted vibration white finger and 170,000 had claimed compensation by 2011 this study relates to the design and development of a hand and arm vibration (HAVmeter) monitor by the ERPE Reactec student start-up company. This company initially focussed on optimisation of sweeping for curlers, contributing to team GB winning the 2002 Winter Olympic Gold medal. The current Reactec (HAVmeter) instrument measures and reports on vibration white finger, which potentially affects 5 million British workers.

The HAVmeter has sales in excess of £9M, over the 2008-2013 period, and is now in use by 45,000 construction workers. Reactec, with 23 employees and a turnover of ~£2.5M p.a., company innovation has been recognised with 4 industrial awards since 2009.

Submitting Institutions

Heriot-Watt University,University of Edinburgh

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Engineering: Materials Engineering, Interdisciplinary Engineering

Decision Analysis and Support Tools for the Aerospace Industry

Summary of the impact

Research carried out at the University of Southampton has enabled major players in the aerospace industry — among them Rolls-Royce, Airbus, and Boeing — to produce more fuel efficient, longer lasting engines and aircraft at reduced cost. The research has provided the aerospace industry with modelling tools and software enabling companies to explore complex new designs quickly whilst managing product risk in a competitive market. The research team has also developed new design processes for unmanned aircraft, which — as a result of strong media interest - improved public understanding of such new technologies through worldwide coverage. A spin-out company has achieved strong technological and economic impacts in its own right.

Submitting Institution

University of Southampton

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics, Numerical and Computational Mathematics

1: New design methods from piling research that improve the foundation safety and economy of offshore structures

Summary of the impact

The Imperial College Pile `ICP' effective-stress pile design approaches for offshore foundations offer much better design reliability than conventional methods. Their use delivers substantial economies in many hydrocarbon and renewable energy projects, better safety and confidence in developing adventurous structures in others. The ICP has enabled production in otherwise unviable marginal hydrocarbon fields, new options in high-value deep-water projects and helped eliminate installation failures that can cost hundreds of £million. We present evidence that the research delivered direct benefits exceeding £400m since 2008 in projects known to us, with larger worldwide benefits through project risk reduction and independent exploitation.

Submitting Institution

Imperial College London

Unit of Assessment

Civil and Construction Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Civil Engineering, Resources Engineering and Extractive Metallurgy

Filter Impact Case Studies

Download Impact Case Studies