Similar case studies

REF impact found 7 Case Studies

Currently displayed text from case study:

2. Transforming quantitative prediction of molecular properties through software - Molpro

Summary of the impact

Research in quantum-mechanical methods, conducted at the School of Chemistry at Cardiff University, has resulted in the creation of an innovative software package called Molpro. Molpro provides the ability to calculate from first principles (ab initio) the properties of molecular matter. It is unique and differs from other quantum chemistry packages because, using local electron correlation methods, it significantly reduces the increase of the computational cost with molecular size. This means highly accurate computations can be performed for much larger molecules than with most other programs, and the screening of far wider libraries of potential new materials is enabled. Consequently, Molpro is extremely valuable to the global chemical and pharmaceutical industries and has been endorsed and applied by major international corporations that manufacture products that are used by a wide range of industries (including cosmetics, automotive and construction). Examples are BASF, Mitsubishi Chemical Group, Sasol and Nissan Chemical Industries.

The software is distributed under licence through Cardiff University and resellers, operating in China, Japan, Brazil, Taiwan, Russia, Poland and the USA. During the REF period, it has generated over £1.75M in revenue, and is used by over 650 organisations worldwide. Accordingly the impact claimed is extensive economic gain and impact on practitioners and professional services.

Submitting Institution

Cardiff University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Information and Computing Sciences: Computation Theory and Mathematics, Computer Software
Technology: Computer Hardware

Public engagement with evolutionary science: pterosaurs hit the big and little screen

Summary of the impact

Research on the anatomy, physiology and palaeoecology of pterosaurs by the Palaeobiology Group at Portsmouth University has had a wide and acknowledged impact, underpinning the creation and production of block-buster and pioneering television and film productions worldwide. The impact of this work is recognised by Sir David Attenborough, and by the producers of such TV successes as Walking With Dinosaurs and Flying Monsters 3D. These award-winning productions, highlighting our work, have reached a global audience and supported the generation of millions of pounds by the UK TV and film industry. Whilst the income generated is highly significant, perhaps their greatest impact lies in fostering a positive view of science, particularly in young audiences, by bringing cutting-edge evolutionary science direct to the World's film and TV screens.

Submitting Institution

University of Portsmouth

Unit of Assessment

Earth Systems and Environmental Sciences

Summary Impact Type

Cultural

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology, Genetics
Medical and Health Sciences: Neurosciences

Development and commercialisation of a stopped-flow cuvette for fast reaction studies of proteins and enzyme reactions by FTIR spectroscopy

Summary of the impact

The impact of this research has been of commercial benefit for TgK Scientific Ltd, a Wiltshire- based SME, who have successfully commercialised a FT-IR Stopped-Flow instrument. This has achieved market share as a result of incorporating an innovative cuvette designed and fabricated by the University of Birmingham's School of Biosciences. The company has sold nine of these instruments since they were first marketed in 2008, generating ~£200,000 in sales. This has made a substantial contribution to the company's total sales, most obviously in 2012 where sales of four instruments accounted for around 10% of their ~£800,000 turnover. The instrument allows the study of fast biological reactions by rapid scanning Fourier Transform Infrared Spectroscopy. The Birmingham contribution is a cuvette of a unique design that enables biological materials to be mixed and observed after 2-3 ms, allowing enzyme-catalysed reactions which have non- chromophoric substrates to be studied in physiological conditions. TgK have combined the cuvette with their stopped-flow drive system and a spectrometer produced by Bruker to make a complete apparatus; it is believed that this gives the instrument a unique functionality valued by a significant niche market.

Submitting Institution

University of Birmingham

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Resources Engineering and Extractive Metallurgy, Interdisciplinary Engineering
Medical and Health Sciences: Neurosciences

From natural products to medicines by biosynthetic engineering

Summary of the impact

Many clinically-useful natural products fall into the class of polyketides. From 1993, research led by Professors Leadlay (Biochemistry) and Staunton (Chemistry) on polyketide biosynthesis pathways led to the foundation of the spin-out company Biotica Technology Ltd in 1996. Between 2008 and 2013 the company provided continuous employment for on average 15-20 highly-skilled scientists, and attracted additional investments of £4.43M. Its follow-on company Isomerase Therapeutics Ltd, founded by ex-Biotica researchers with Leadlay's support in 2013, has acquired compounds, strains and IP from Biotica. Using the methods developed in the University by Leadlay and Staunton, Biotica developed a HepC antiviral therapy, sold in 2013 to NeuroVive Pharmaceuticals AB and currently entering pre-clinical toxicology tests. Biotica have also licensed their technology to a number of companies globally, including GSK and Amyris.

Submitting Institution

University of Cambridge

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry
Biological Sciences: Biochemistry and Cell Biology, Genetics

New thermostatic controls adopted by molecular dynamics software providers

Summary of the impact

Molecular dynamics (MD) simulations are used extensively in chemistry, biology and material sciences, placing huge demands on computer resources. Because these simulations explore the behaviour of molecules at defined ambient temperature, temperature control (thermostatting) is an essential element of MD algorithms. In a series of papers published from 2009 on, Leimkuhler (Maxwell Institute) and his collaborators developed improved numerical methods for temperature control. They proposed new algorithms and analysed their properties (such as fidelity to the dynamical model, efficiency and stability). The new algorithms have since been implemented in the world's leading MD software packages including DL-Poly, AMBER, NAMD and Accelrys's Material Studio. The research has had clear economic impact on the commercial company Accelrys by improving its product, and more broadly on the community of MD code users worldwide by providing improved simulation tools.

Submitting Institutions

University of Edinburgh,Heriot-Watt University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Pure Mathematics, Applied Mathematics
Chemical Sciences: Theoretical and Computational Chemistry

Quantum and classical atomistic methods to enable improved processing and performance of materials

Summary of the impact

This study describes two atomistic methods that have been used to explain better the behaviour and improve performance of materials. The research at Loughborough University from 2006-2013 has led to improved awareness and understanding in the areas of thin film growth and in irradiated structural materials for nuclear power. It has also led to changes in the operational models that Atomic Weapons Establishment (AWE) use. One of the algorithms developed has been incorporated into standard quantum chemistry packages, due to its increased accuracy and efficiency. The outcomes of the research have also contributed to changing UK government policy with regards to working with India in the area of nuclear research.

Submitting Institution

Loughborough University

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics

Ink Jet Printing

Summary of the impact

Research carried out by Professors Hinch and Rallison at the University of Cambridge determined how ink jet printer fluids behave when emitted from the printer head. The research findings have been used by industry to optimise the design of the printer. Xaar, the world-leading independent supplier of industrial inkjet printheads which uses a drop-on-demand mode, has used the results of this research to improve the design and operation of its ink-jet printers to its own commercial benefit and to the benefit of the users of its printers.

Submitting Institution

University of Cambridge

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Interdisciplinary Engineering

Filter Impact Case Studies

Download Impact Case Studies