Log in
Our research has had impact on the activities of practitioners and their services, health and welfare of patients, on society and on public policy. New diagnostic tests for genetic deafness have been introduced, and healthcare guidelines and professional standards adopted through our investigation of the aetiology of childhood-onset hearing loss. Disease prevention has been achieved by our research on antibiotic-associated deafness, public awareness of risk to health and hearing has been raised, and we have increased public engagement through debate on scientific and social issues. We have also influenced public policy on ethics of genetic testing for deafness with our research resulting in improved quality, accessibility and acceptability of genetic services among many hard-to-reach groups (deafblind, culturally Deaf, and the Bangladeshi population of East London).
Research from the University of Oxford's Clinical Genetics Laboratory initiated the introduction of an upper age limit of 40 years for sperm donors in the UK and internationally and led to increased public awareness of the effect of paternal age in the transmission of inherited disease. Oxford researchers, led by Professor Andrew Wilkie, were the first to describe the exclusively paternal transmission of de novo mutations, in a rare craniofacial disorder called Apert Syndrome; they also showed that the accumulation of such mutations leads to a disproportionate risk of disease transmission with age. By showing that the frequency of mutations increases with paternal age, this research contributed to important changes in clinical practice relating to sperm donation. This has also had a significant cultural impact, as the research and its clinical outcomes have challenged public perceptions of paternal age.
Although individually infrequent, rare diseases collectively are a major health burden, particularly for individuals who suffer with conditions that are not routinely diagnosed or have no effective care pathways. Through the work of Professor Tim Barrett, the University of Birmingham is internationally recognised for translational research in rare inherited diabetes and obesity syndromes. This has had major impacts on patient care through gene identification for devastating multi-system syndromes; development of a unique international diagnostic testing service combining molecular testing with international clinical expertise; European reference centre status for three NHS highly specialised multidisciplinary services; and leadership of the European Registry for rare diabetes syndromes. Our national and international leadership for these previously poorly-served conditions has enabled sharing of best clinical practice, including development of clinics for Wolfram syndrome across the world.
Impact: Health and welfare; policy and guidelines; public engagement. The identification of >20 genes linked to human developmental and childhood degenerative disorders.
Significance: Definitive diagnosis is essential for genetic counselling, prenatal screening and postnatal management.
Beneficiaries: People with developmental disorders and their families, prospective parents, the NHS and healthcare delivery organisations; public understanding of genetic disorders.
Attribution: Researchers from UoE identified/characterised all the genes described, and their mutation in disease.
Reach: Worldwide: these developmental disorders affect thousands of people. Genetic tests established as a result of the research are provided for people from 35 countries on all continents.
Research by Professor Elizabeth Shephard at the UCL Research Department of Structural and Molecular Biology has led to identification of the genetic origin of Trimethylaminuria (TMAU), commonly known as fish-odour syndrome. This has led to genetic diagnosis and genetic counselling for TMAU in the UK, Europe, USA and Canada, and the publication of guidelines for treatment and diagnosis. Shephard has engaged closely with patient groups over the years to publicise her findings. There is now an increased understanding among medical practitioners and the public that the body odour produced is due to a metabolic defect of genetic origin, and is not due to poor hygiene.
Identification of MUTYH by researchers at Cardiff University as the first gene causing autosomal recessive colorectal cancer led to international adoption of MUTYH genetic testing in the management of familial colorectal cancer and thereby to global improvement in genetic counselling and colorectal cancer prevention. Since 2008 MUTYH gene testing has been introduced progressively and is now provided by at least 84 European state and commercial diagnostic laboratories. Commercialisation of testing in North America via a licence to Myriad Genetics Inc. generated income of approximately $5M between 2008 and 2011 and licence fees and royalties to date of £331,947. Thus we claim impacts in health and commercial benefit, the financial beneficiaries being Myriad Genetics and Cardiff University.
Research at the UCL School of Pharmacy has positively influenced healthcare in startle disease/hyperekplexia, a rare disease that affects humans and several animal species, including dogs, horses and cattle. The identification and functional characterisation of mutations in genes involved in human startle disease by researchers at the School has improved genetic diagnostics and patient care. Our research on startle disease in cattle and dogs has also led to new non- invasive diagnostic tests that have alleviated animal suffering and reduced negative economic impacts on farmers. Overall, our findings have been translated into tangible benefits for the human and animal populations affected by this disease and have changed the way in which the disease is diagnosed and treated. We have also significantly increased the awareness of this rare disorder by communicating with academics, healthcare and veterinary professionals, and the general public.
Long-standing research led by Prof. O'Rahilly (Department of Clinical Biochemistry) into the genetic and biochemical basis of severe insulin resistance syndromes, has led to improvements in diagnosis and care of patients internationally. These advances have facilitated revision of existing clinical classifications and implementation of novel diagnostic and management algorithms for these conditions. The clinical applicability of this research was recognised in 2011 by the Department of Health-England who have commissioned a national severe insulin resistance service in Cambridge, with support totalling ~£450,000 per annum.
Research by Professor David Brook on inherited disorders has made a major contribution to the human genetics field. The work involved gene identification and mutation detection for genotype/phenotype correlation analysis in patients, which has led to the development of diagnostic tests for inherited conditions including myotonic dystrophy type 1 (DM1), Holt-Oram Syndrome (HOS), and campomelic dysplasia (CD). The tests have benefitted patients in the UK and throughout the rest of the world and in many cases they have been used as the definitive diagnostic measure. The assays developed have also been used in affected families for prenatal diagnosis to enable informed reproductive decisions.
Congenital disorders are causes of major morbidity and mortality worldwide. Using autozygosity mapping in a local community of Pakistani origin who have high rates of inherited recessive disorders due to consanguineous unions, we have identified more than 30 novel disease genes. Isolating these previously unknown molecular defects has enabled us to develop key diagnostic assays, subsequently provided by clinical laboratories globally. Our work has provided thousands of patients with a definitive diagnosis, removing the need for complex clinical testing. Those affected can be offered focused management and early therapeutic intervention as well as carrier and prenatal testing for themselves and family members. Our findings also provide new research opportunities for previously undefined diseases.