Log in
This case study details the impact of current glaciological research at the University of Aberdeen on the Earth's polar ice sheets on practitioners and services in the non-academic science community, specifically the British Antarctic Survey (BAS) and European Space Agency (ESA). In addition, the research has informed public understanding of the stability of the polar ice caps under the influence of climate change. The beneficiaries of our research are professional scientists in Environmental and Earth Sciences working at BAS and ESA who have used our findings to constrain computer modelling of ice sheet dynamics and to calibrate and validate measurements of ice sheet mass change. We have been involved in major international collaborative field research on the Antarctic and Greenland Ice Sheets to better define the current basal and surface boundaries of the ice sheets and to improve the understanding of the sensitivity of the ice sheets' boundaries to climate change over a range of timescales.
Supported by world-leading research, Geography and Earth Sciences' Centre for Glaciology (CfG) operates as a highly-effective hub for providing information to the public concerning the relationships between climate change and Earth's ice masses. The impact of this engagement has been to inform the knowledge base of an international audience of people concerning the reality of climate change and its consequences for the cryosphere. This has been achieved through (i) extensive involvement in television, radio and newspaper coverage, (ii) the design and provision of a broad range of innovative internet-based and social media resources, and (iii) authorship and presentation of lectures, books and articles specifically designed to improve public understanding.
Polar research at SPRI has been made accessible to wider audiences through the Polar Museum, which is unique as Britain's only museum dedicated to the Arctic and Antarctic. The Museum's formal plan has at its core the use of displays to communicate SPRI's research findings to a general, non-specialist audience; for example, showing the public how this research is deepening the understanding of environmental problems such as sea-level rise. A complete redesign in 2009- 10 utilised SPRI research in polar science and humanities to underpin museum displays (which had previously related only to polar exploration) and to project the significance of the rapidly changing polar environment — climatic, social and cultural — to a diverse audience (c. 50,000 in 2012) with international reach. Research is communicated through captioned museum exhibits, interactive screens and audio-guides, talks and tours, and Internet resources. Wide secondary reach includes substantial media coverage in newspapers, TV and radio. The Polar Museum was shortlisted for the Art Fund's prestigious Museum of the Year Award in 2011 and for European Museum of the Year in 2012.
The Open University (OU) co-produced the highest rating television natural history science programme in the UK since 2001. Input from Dr Mark Brandon's research over the last 15 years shaped the subjects to be filmed, the science portrayed, and the narrative used in the series. The impact had reach and significance: 263,000 A0 polar maps containing research-level science were requested by the UK public, and the series provided a focal point that changed the public debate on polar climate change. This debate influenced the passage of the UK Antarctic Bill through the Houses of Parliament.
Research based on unique marine-geophysical, bathymetric and geological data from the previously little-known polar shelf seas, collected and analysed by Dowdeswell and colleagues, has had significant impacts on the work of British and international charting agencies and on the activities of multi-national hydrocarbons companies. In terms of hazards in polar seas, these high-resolution water-depth data from offshore of Greenland and Antarctica have proved invaluable for use by the UK Hydrographic Office and international sea-floor mapping agencies in formal navigational charts that have wide international reach. Industry has also used Dowdeswell's satellite-derived measurements of iceberg dimensions and drift tracks, together with evidence on iceberg-keel ploughing of the sea floor, to assess hazards of operating ships and sea-floor structures in Arctic waters. Dowdeswell and colleagues' interpretation of seismic data has generated understanding of Quaternary sedimentary geometry and architecture on glacier-influenced shelves. This has been used in collaborative projects with hydrocarbons companies in applications to identify sorted sandy sediments (significant as oil and gas traps) in hydrocarbon-bearing ancient glacial rocks, for example in North Africa.
Cranfield's understanding and modelling of aircraft icing, a critical part of the safety, operation and design protocols for all types of aircraft, has changed the way in which aerospace companies approach the design of new aircraft. Cranfield's research has produced high quality predictive software and an extensive experimental validation database the impact of which is its use in the design, optimisation and certification of aircraft and their components.
The impact of Cranfield's icing research is in the design processes for:
The consultancy company AeroTex makes use of UCL research findings to design new and improved ice protection systems for fixed wing or rotor aircraft. These new designs enable AeroTex's customers (aircraft manufacturers and Tier 1 equipment suppliers) to comply with upcoming changes that are raising aircraft certification standards and to operate aircraft more safely in icing conditions. The increase in income to AeroTex resulting from this work was approximately [text removed for publication] per year between 2010 and 2013, representing around 15% of AeroTex's annual turnover.