Similar case studies

REF impact found 6 Case Studies

Currently displayed text from case study:

The Future of Nuclear Energy in UK: Birmingham Policy Commission

Summary of the impact

The UK is on the verge of building a fleet of new nuclear power stations. The steps required to reach the point where the UK can build Generation III+ plants are a complex mix of energy and financial policy and technology. The issues connect with the fuel cycle, waste disposal and public opinion. Failure in one of these areas could derail the new build programme. Starting in 2011, finishing July 2012, the University of Birmingham led a Policy Commission into the Future of Nuclear Energy in the UK. The Commission has been part of a number of national processes which have influenced and shaped UK policy and thinking in nuclear energy. In 2013 the UK Government published its stance. Recommendations made by the Policy Commission on key topics such as nuclear research capabilities and national nuclear policy bodies are reflected in the Government's report and subsequent actions. Impact has been in terms of public engagement and influencing public policy. Nuclear new build could be an investment of £40bn into the UK economy.

Submitting Institution

University of Birmingham

Unit of Assessment

Physics

Summary Impact Type

Political

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics, Other Physical Sciences
Chemical Sciences: Analytical Chemistry

Nuclear Non-proliferation

Summary of the impact

The case study describes the impact on society of research on the history and politics of nuclear weapons and non-proliferation. Specifically, it demonstrates how this research has informed and shaped public understanding, discourse and debate on the nature of the nuclear non-proliferation regime. The research underpinning this impact examines the effects of the nuclear revolution upon international politics, and the consequences of these effects upon the contemporary non-proliferation regime. The research identifies a number of negative consequences arising from the activities of the so-called `nuclear non-proliferation complex'. The active dissemination of the research findings has generated considerable media coverage of research claims. In part through this extensive media exposure, the research has impacted, in a distinctive way, discussions over nuclear non-proliferation among a wide range of societal beneficiaries: members of the public, commentators, policy observers concerned with nuclear affairs, and civil society and NGO actors. The impact has been generated both within and outside the UK.

Submitting Institution

Aberystwyth University

Unit of Assessment

Politics and International Studies

Summary Impact Type

Societal

Research Subject Area(s)

Studies In Human Society: Political Science

Nuclear defence

Summary of the impact

Professor Matthew Jones was selected as a Cabinet Office official historian in 2008. His research has provided a historical context and knowledge base for senior Cabinet Office and Ministry of Defence officials currently engaged with strategic nuclear policymaking. Jones' research (including insights into the costs overruns, technical uncertainty, and delay of previous nuclear deterrents) has contributed to the process of policy-making, informing how senior officials responsible for dealing with debates over future options in the strategic nuclear policy field will deploy public expenditure of over £20 billion.

Submitting Institution

University of Nottingham

Unit of Assessment

Area Studies

Summary Impact Type

Cultural

Research Subject Area(s)

Studies In Human Society: Political Science
History and Archaeology: Historical Studies

Development of New Chemical Methods for Waste Management in Future Nuclear Fuel Cycles

Summary of the impact

The research groups of Professor Laurence Harwood and Dr Michael Hudson (now retired) at the University of Reading have developed new and highly selective extractants for spent and reprocessed nuclear fuels. These novel extractants remove specifically the components in nuclear waste that have the highest levels of long-term radioactivity. The extracted components (minor actinides) may subsequently be converted — "transmuted" — into elements with greatly reduced radioactivity. Storage times for high-level nuclear waste can thus be reduced by a factor of a thousand, typically from 300,000 to 300 years. This significant advance in the management of nuclear waste means that next-generation nuclear power production will be safer, more economical and more sustainable, as well as increasing the wider acceptance of nuclear power as a viable alternative to fossil fuels. The newly-developed extractants are now available commercially through TechnoComm Ltd.

Submitting Institution

University of Reading

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Other Chemical Sciences
Engineering: Chemical Engineering

Extending nuclear reactor life by research into radiation damage in graphite

Summary of the impact

This research underpins assessments of nuclear reactor longevity and safety and has contributed to EDF's project to extend the life of nuclear reactors by 100+ reactor-years. So far this project has achieved 48 years or nearly £9bn in benefit. The Sussex contribution is accruing value to the UK economy of an estimated £100M at today's prices, with about £40M of that achieved already. Graphite in nuclear reactors is susceptible to neutron damage, and accurate estimations of the rate of graphite damage in reactors are critical to safety and to predicting reactor lifespan. Research from Sussex has developed models for graphite damage that now underpin one component (of six independent components) of the safety assessments conducted by the nuclear industry for Advanced Gas-cooled Reactors. The research demonstrated that a previous model employed for this purpose was invalid, and developed alternative models that have been adopted by the nuclear industry.

Submitting Institution

University of Sussex

Unit of Assessment

Chemistry

Summary Impact Type

Economic

Research Subject Area(s)

Physical Sciences: Atomic, Molecular, Nuclear, Particle and Plasma Physics
Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

An Alternative Nuclear Future

Summary of the impact

The University of Huddersfield leads the UK in the development and advocacy of the thorium nuclear fuel cycle as an alternative to the uranium/plutonium cycle. We have set the design parameters for feasible thorium fuelled accelerator driven subcritical reactor assemblies for power generation and waste management and for fertile to fissile conversion of thorium [A]. Our high media profile [G,H] and extensive interactions with the public [I] and policy makers both in the UK and US [B,C,E,F] has led to growing acceptance of thorium as a realistic, safer, cleaner and proliferation resistant alternative fuel for nuclear fission reactors. Consequently our research is now influencing nuclear policy both at home and overseas [D,F].

Submitting Institution

University of Huddersfield

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Engineering: Chemical Engineering

Filter Impact Case Studies

Download Impact Case Studies