Log in
Since Prof Blunt's appointment as a Professor of Petroleum Engineering at Imperial College in 1999, his Consortium on Pore-Scale Modelling has developed numerical tools to analyse the pore spaces of reservoir rocks, predict multiphase flow properties and determine field-scale impacts on oil recovery. This technology is now exploited by at least two start-up service companies with annual revenue of around $20 million, and is widely employed by major oil companies, leading to better reservoir management and improved oil and gas recovery. Statements submitted from just one company (Kuwait Oil Company, KOC) suggest a benefit of $100 million from efficiency savings and improved recovery in a just single field.
Failure to predict and control geological overpressures during drilling can lead to operational delays costing millions of pounds, or to blow-outs causing serious environmental damage and costs running into billions. Using methodologies, knowledge and data analysis techniques developed at Durham, a spin-out, GeoPressure Technology (GPT; now Ikon Geopressure) (20 employees, revenues 2008-13: £10.8 million) has become a niche supplier to the global oil industry of expertise, training and software ("PressureView") that predicts and assess the causes of overpressure. GPT consultancy has had particular impacts for companies drilling in the North Sea, offshore Canada, Norway and West Africa where overpressure represents a significant technical challenge.
Impact: Economic benefits have been derived from the MTEM Limited spin-out company, which has been owned since 2007 by Petroleum Geo-Services (PGS). These include a commercial marine application of the MTEM (Multi-Transient ElectroMagnetic) method offshore Tunisia in 2008, successfully discovering hydrocarbons before drilling and the 2012 launch by PGS of a fully-towed commercially-viable marine MTEM system.
Significance and reach: Approximately 180 man-years of employment, with a value of more than $15M, have been provided in Edinburgh over the period January 2008 — December 2012.
Underpinned by: Research into electromagnetic survey methods, undertaken at the University of Edinburgh (1999 onwards), which led directly to the creation of MTEM Limited.
Researchers in petroleum geology at the University of Aberdeen have since the mid 1990's been investigating the characteristics and geological context of sand injectites. The geological contexts within which injected sands are discovered have permitted a step change in the production potential in some oil fields (up to c. 1 billion barrels oil), and to define new exploration targets (up to 250 million barrels oil) to make a significant increase to the overall proven reserves of hydrocarbons in any given province (e.g. the North Sea). The findings of this research have been utilised by a number of multinational oil & gas companies to optimise their exploration and field development strategies to maximise the commercial production of hydrocarbons. This case study describes the economic impacts resulting from two projects in particular in the North Sea, the Volund field (Marathon Oil) and the Mariner Field (Statoil) resulting in the enhancement of strategy, operations and management practices; improvements in performance and adoption of new processes; and creation of new employment as a direct result of research facilitating the development of new assets that would otherwise have remained fallow.
Research performed at the University of Leeds allows the petroleum industry to reduce radically the amount of time that taken to estimate the key properties of tight sandstones containing natural gas. These properties largely determine whether gas fields are economically viable. Tests used in the past have taken between six months and two years to complete; with the Leeds research, results can now be obtained in less than one day — a radical improvement. Industry has used the results to justify drilling new prospects and to improve understanding of the controls on gas and water production in existing fields, which has shaped appraisal and production strategies.
Bristol researchers have been working with the oil and gas industry to develop new methods for monitoring and modelling deformation in oil and gas reservoirs. Industry and NERC funded research has led to the development of (i) novel techniques that better utilise microseismicity monitoring of petroleum reservoirs, and (ii) new software which couples geomechanical deformation and fluid flow with geophysical observations. The research has led directly to development and improvement of commercial software to enhance exploration efforts and minimise costs. Bristol software is now used by several multinational companies worldwide and its development has led to a successful start-up company.
The data generated from research undertaken by ERPE has enabled BP to leverage an investment of $125M for full field implementation of Lo-Sal® EOR technology in the Clair Ridge Field, west of Shetland.
This research has provided BP with a step change in understanding of how to maximise oil recovery and production. Low Salinity Water Flooding has been shown to increase oil recovery by an average of ~16% when compared to standard "High Salinity" water flooding. Based on this work, BP made a strategic decision in September 2012 to use Low Salinity Water Flooding as their default position for field development, by adopting this significant development in water-flooding technology.
Durham research on hydraulic fracturing was an important part of the UK government's reasoning for lifting the ban on hydraulic fracturing to recover gas and oil from shale, which has an estimated commercial value in the UK of £1500 billion. We demonstrated that hydraulic fractures will not be tall enough to cause contamination of water supplies where there is a sufficient vertical separation (> 600 m) between the shale reservoir and the drinking water aquifer. Durham research has also provided critical data needed by national environment agencies setting regulations, oil and gas companies seeking permission from regulators to drill wells and for local communities that are objecting to hydraulic fracturing.
Water distribution systems (WDS) are highly complex, spatially distributed networks comprising thousands of different components which deliver drinking water to customers. The impact described here has been achieved in areas of energy management, pressure control and burst detection in WDS. Some developed solutions, such as the model reduction method, model of pump stations and pressure control algorithms, have been widely accepted by the water research community and then filter down to industrial applications or implemented in a widely available shareware. Direct economical and environmental impacts have been achieved by projects for the UK companies with measurable benefits in pounds through reducing water losses and energy consumption as described in Section 4. These include South Staffordshire Water, Aquavent and Scottish Water in the pressure control area and Affinity Water (former Veolia) in the energy management and burst detection areas.
Around 25% of UK adults have high blood pressure (hypertension), accounting for more than half of all strokes and heart disease. The pressure that the heart and brain senses that leads to these diseases is central aortic pressure. The Unit's research developed and evaluated methods for the non-invasive assessment of central aortic pressure, demonstrating its important relationship to clinical outcomes. The work has contributed to improvements in the way high blood pressure is treated for millions of people, nationally and worldwide, by (i) providing a rationale for one of the biggest-ever changes in treatment guidance in 2006; (ii) stimulating major growth in medical devices for the non-invasive measurement of aortic pressure with a simple, easy-to-use wristwatch invention; (iii) and developing central aortic pressure as a better biomarker for pharmaceutical companies to develop new drugs to treat hypertension.