Log in
Research by Amol Sasane and co-authors is the foundation of an invention patented and used by the aerospace company Boeing to design flight control systems. The invention is a method which aims to optimize aerodynamic performance of aircraft, thereby improving fuel efficiency and flight safety.
Sasane and his co-authors' research is explicitly mentioned as having been used to overcome a problem in flight control — one that arises in newer, more sophisticated aircraft designs — in Patent no. US 8, 185,255 B2, 'Robust control effector allocation'.
Inverse kinematics mathematics developed at Surrey for satellite control is being commercialised for motion capture, film animation and for real-time animation in computer games through IKinema, a University of Surrey spin-out company. Ikinema is the most advanced full-body IK solver and has been used in films such as X-men First Class and Wrath of the Titans 2; it is embedded in Luxology's modo-601, and is used by major film studios including 20th Century Fox, Disney, Lucas Film, ILM, and visual effects specialists and game developers such as Framestore, Square Enix, and AudioMotion. IKinema currently employs 6 staff and is profitable, with 80% of sales revenues generated by export.
Collaborations funded through EPSRC Interact and RCUK UK-China Science Bridge resulted in QUB's advanced control research having important economic and environmental impact in China, Pakistan, Vietnam. This includes the creation of new core modules for the Shanghai Automation Instrumentation Co (SAIC) SUPMAX Distributed Control System series of products now in use for whole plant monitoring and control to maximise energy efficiency and reduce pollutant emissions. These products have since 2008 increased SAIC's revenue by over $50M p.a. Related networked monitoring technologies have been successfully deployed in Baosteel's hot-rolling production lines and in the Nantong Water Treatment Company that treats 20,000 tonnes of industrial waste water daily.
Our work has facilitated the creation of a variety of innovative control strategies for First Hydro Company (FHC), owner of Europe's largest pump storage plant. FHC's two plants are both supported by the simulation platform developed as part of our research and responsible for balancing load variation on the National Grid. Critically, FHC's business model relies on their ability to provide ancillary services within a short time. Our research produced a comprehensive plant model, and was used to enhance the dynamic response of the Dinorwig station; this resulted in improvement in National Grid stability and has provided competitive advantages to FHC since 2008.
The application of advanced control algorithms has generated an impact on the economy and the environment through increased precision and reduced cost of operation of fast mechanical systems. A reduction in fuel consumption and CO2 emissions has been achieved in the transportation industry by the implementation of novel advanced control algorithms for advanced cruise control systems.
Novel integrated control systems together with their application within a holistic operational strategy have been created as a result of research with Caterpillar. Caterpillar the world's largest manufacturer of high-speed diesel generator sets (gen-sets) has invested [text removed for publication]. This activity yields significant commercial advantage in both performance and efficiency bringing benefits for the environment, through reduced emissions, and major customer operational savings.
The University of Nottingham (UoN) led research that resulted in the design, evaluation and national implementation of a new approach to mastitis control on British dairy farms; the `DairyCo Mastitis Control Plan'. The programme, which commenced in 2009, was implemented on farms holding 10-15% of all British dairy cows. The uptake of the scheme is continually increasing and has generated savings to the British dairy industry to the order of £5-10M per annum.
A unified design methodology for tuning gas turbine engine controllers, developed by researchers in the Department of Automatic Control and Systems Engineering (ACSE), is being used by Rolls- Royce across its latest fleet of Civil Aero Trent engines. Trent engines are used to power, for example, Boeing 787 Dreamliner and Airbus A350 aircraft that have been adopted by the world's leading airlines.
This new methodology has made economic impact through the introduction of a new process for tuning gas turbine engine controllers leading to the adoption of a significantly changed technology. Indicators of impact are:
i) a new control law and design practice, resulting in a unified approach for different projects;
ii) reduced development effort by shortening and simplifying the design exercise and rendering it suitable for modular insertion; and
iii) streamlined verification requirements.
Drivers of more than 20,000 Jaguar supercharged cars sold worldwide since 2009 are enjoying handling and safety benefits as a direct result of research at Loughborough University. The active differentials control system in production on Jaguar's XF, XJ and XK vehicles is controlled by an algorithm developed at Loughborough. Funded by Jaguar Cars Ltd, the research from 2002 to 2006 was first adopted, after only minor changes, into the supercharged Jaguar XF programme released in 2009. The system is now also in the new F-type and is being extended, in a modified form, to Range Rovers, starting with the new Range Rover Sport.
This case study provides an account of work on a mathematical framework for the design and optimization of communication networks, and some examples of the framework's influence upon the development of the network congestion control schemes that underlie modern communication networks, notably the Internet.
The impact on protocol development and on network architectures has been significant; in particular on the development of congestion control algorithms and multipath routing algorithms that are stable and fair. Several of the insights on large scale system behaviour have been transferred to help understand cascading failures in other large scale systems, including transport infrastructures.