Similar case studies

REF impact found 27 Case Studies

Currently displayed text from case study:

Combinatorial protein domain hunting to facilitate drug discovery

Summary of the impact

Combinatorial Domain Hunting (CDH) technology is a technique for producing fragments of proteins that are soluble and tractable for biophysical analysis. It was developed between 1999 and 2008 at Birkbeck College, in the laboratory of Dr Renos Savva. This technology was patented in 2001 and the biotech company Domainex Ltd was then formed to commercialise it. In 2007, Domainex merged with a UCL spinout company, NCE Discovery Ltd. The company has attracted over £3m in investment and employs about 31 people. In addition to its contract research programme, it has developed an in-house drug discovery programme utilising CDH. Early in 2012 a patent was filed on a series of inhibitors of the protein kinases IKK03b5 and TBK1, which are validated drug targets for cancer and inflammation, and the first of these are expected to begin clinical trials in 2014.

Submitting Institutions

University College London,Birkbeck College

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Generating commercial impact through industry investment in cancer therapies that target tumour cell metabolism.

Summary of the impact

Research conducted at the University of Bristol between 1994 and 2013 has led to major commercial impact through industry investment in cancer therapies that target a family of transporter proteins (MCTs) identified and characterised by Professor Halestrap and his colleagues. Halestrap has worked directly with AstraZeneca, a leading global biopharmaceutical company, to integrate the Bristol-based research into their own research programme to elucidate the mode of action of a group of novel immunosuppressive agents that target MCT1. Subsequent ongoing collaborations have underpinned AstraZeneca's development of these drugs for cancer chemotherapy, with clinical trials of their compound AZD3965 underway, as well as investment in a new cancer drug discovery programme targeting the MCTs.

Submitting Institution

University of Bristol

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Development of a novel light-scattering instrument and applications for measuring molecular interactions and aggregation analysis

Summary of the impact

Professors Zhelev (UoA5) and Bradley (UoA15) explored the scope and demonstrated the feasibility of using light-scattering methods for quantitative analysis of macromolecular associations and aggregation, including protein-protein and protein-DNA interactions. 16 years of design and development research was translated into a marketed product — the PAM™Zero — a novel hand-held, low-cost protein aggregation monitor capable of detecting macromolecule aggregation in microliter sample volumes. Manufactured and sold through a spinout company, Norton Scientific Inc. (established in 2010 and valued at $7M), this portable instrument is used in commercial Quality Control and academic research and has been sold to a range of stakeholders e.g. drug development companies, for food safety and water pollution monitoring.

Submitting Institution

University of Abertay Dundee

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology

UOA10-15: Exploitation of rapid protein structure prediction tools

Summary of the impact

Novel rapid methods for predicting protein structure, particularly functional loop structures, have been developed by researchers at the University of Oxford. These have been made accessible to a large audience through a suite of computational tools. The methods have had general impact through download and online access and specific impact through extensive use within UCB Pharma. The tools are much faster than other methods, creating equal or better predictions in approximately a thousandth of the time. Commonly exploited by UCB Pharma in their drug discovery pipeline, they have cut computational cost, but, more importantly, they have greatly reduced the time for process improvements. UCB Pharma estimate that the tool pyFREAD alone saves over £5 million in the discovery costs for a single drug molecule. FREAD (a version of pyFREAD coded in C) is also being used more widely, for example by Crysalin Ltd and InhibOx.

Submitting Institution

University of Oxford

Unit of Assessment

Mathematical Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Statistics
Chemical Sciences: Theoretical and Computational Chemistry
Medical and Health Sciences: Neurosciences

New techniques in protein analysis speed up biopharmaceutical R&D

Summary of the impact

Research in protein folding and technological development at the University of Leeds led to the creation of Optim1000, a high throughput microlitre protein stability analyser, through Leeds spin-off company Avacta. Used in the early stages of R&D in the biopharma industry, Optim1000 evaluates the stability and homogeneity of complex biological drugs, using just micrograms of protein sample. This screening reduces the costly development and late-stage failure of unsuitable candidate therapeutics. The platform has been sold to a wide range of global biopharma companies; it is reported to reduce drug stability screening by months. This provides economic impact through saving the industry millions of dollars in R&D costs, along with health impact by speeding up the emergence of new products. Avacta reported revenue of over £3 million in 2012 and employs 70 staff.

Submitting Institution

University of Leeds

Unit of Assessment

Physics

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Physical Chemistry (incl. Structural)
Biological Sciences: Biochemistry and Cell Biology

2 - Pioneering Methods for Biopolymer Analysis and their Impact on Biopharmaceutical Characterisation and Regulation in the Drug Industry

Summary of the impact

The protein research of Imperial's Mass Spectrometry group led to the development of Mass Mapping /Fingerprinting for rapid protein characterisation, and new methods for disulphide bridge and glycosylation assignment. Commercialising these discoveries, the company M-SCAN has developed methods to accelerate industrial research and commercialisation of the next generation of recombinant drug therapies, such as monoclonal antibodies targeting cancers. M-SCAN is the pioneer of Biopharmaceutical Characterisation. It has influenced the regulatory advice and, in the past ten years, has assisted many hundreds of companies worldwide in developing their products for market, leading to the growth of a profitable business. In 2010, SGS S.A., a multinational company that provides inspection, verification, testing and certification services, acquired M-SCAN for an undisclosed sum, satisfying SGS's vision to become one of the top players within the Biologics testing arena.

Submitting Institution

Imperial College London

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry
Biological Sciences: Biochemistry and Cell Biology

Increasing the yield of important enzymes for industry

Summary of the impact

Bacillus species constitute an industrially-important group of bacteria that are used worldwide to produce carbohydrate and protein-digesting enzymes on a large scale. While the bacteria secrete native enzymes at an economically viable rate, generating strains of bacteria that could do the same for non-native enzymes has been an industry challenge. Researchers at Newcastle University have collaborated with industry since the early 1990s to study the mechanism of protein secretion in Bacillus. They discovered bottlenecks in the protein secretion pathway and used that knowledge to engineer more productive strains of bacteria. Since 2008, companies, including Novozymes (the world's largest manufacturer of industrial enzymes), have developed strains of bacteria, based on the Newcastle findings, for use in their manufacturing processes improving yields by more than four orders of magnitude in some cases.

Submitting Institution

Newcastle University

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology

Development of the spin-out company PolyTherics, a major provider of conjugate therapy and protein modification technology to the pharmaceutical and biotechnology industries

Summary of the impact

Protein modification represents a highly significant and growing source of new products for the biopharmaceuticals market. This case study outlines the development of PolyTherics, a highly successful spin-out company from the UCL School of Pharmacy, and the impact that their enabling technology has had on the pharmaceutical and biotechnology industries. The company was developed as a direct result of new conjugate technology developed by Professor Steve Brocchini and coworkers at the School. The company moved to independent premises in 2006 and now manages a portfolio of over 100 granted and pending patents. Several licensing agreements are in place, including with Celtic Pharma Holdings for haemophilia treatments and Nuron for a multiple sclerosis treatment based on PEGylation conjugation technology. Revenue is expected to be £8m in 2013. The impact of Polytherics is therefore as a significant and effective technology provider to the pharmaceutical and biotechnology industries.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Medical Biochemistry and Metabolomics, Pharmacology and Pharmaceutical Sciences

UOA05-17: Everest Biotech Ltd: providing high quality reagents for research

Summary of the impact

Professor Neil Barclay and Dr Nick Hutchings established Everest Biotech Ltd in 2000 in response to the increasing demand for high quality antibodies within the research community. This successful spin-out company has since become a major power in antibody research and production, a position reflected by its portfolio of more than 6,000 antibodies recognising human, mouse and rat proteins, and the generation of 60 new antibodies each month. With offices in the UK and Nepal, Everest Biotech Ltd also benefits one of the poorest communities in the world by providing additional income to hundreds of farmers in the Nepalese foothills.

Submitting Institution

University of Oxford

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Pharmacology and Pharmaceutical Sciences

Micro-porous polyethylene: A novel affinity chromatography matrix for the bio-processing industry

Summary of the impact

Essex research identified a novel bioprocessing matrix which has since been developed into commercial products and recently launched into external markets by Porvair Filtration Group Ltd. The discovery involved the chemical modification of sintered thermoplastic materials in order to attach biological molecules, so conferring highly specific functionalised properties to an otherwise inert base material. This enabled a new approach for protein immobilisation, having technical and practical advantages over existing processes. As a direct result, Porvair has adopted a new technology and invested £900k in R&D over eight years. Essex research has supported a change in business strategy, enabling entry into new markets, which has in turn both safeguarded and created jobs at Porvair.

Submitting Institution

University of Essex

Unit of Assessment

Biological Sciences

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry
Biological Sciences: Biochemistry and Cell Biology

Filter Impact Case Studies

Download Impact Case Studies