Similar case studies

REF impact found 27 Case Studies

Currently displayed text from case study:

Development of more effective technologies for oral delivery of drugs via improved understanding of the physiological features of the gastrointestinal tract

Summary of the impact

Research by Professor Abdul Basit's group at the UCL School of Pharmacy is leading to improved treatments for ulcerative colitis and other conditions through increased knowledge of the complex physiology of the gastrointestinal tract. Improved understanding of in vivo drug release and uptake has allowed development of three patent-protected technologies for improved drug delivery: PHLORALTM, for release of drugs in the colon, and DuoCoatTM and ProReleaseTM formulations designed to allow intact transit through the stomach followed by immediate release upon gastric emptying. These technologies are the subject of licences and ongoing development programmes, with PHLORALTM currently in phase III clinical trials. The impact is therefore the introduction of enabling technologies that have positively influenced the drug development programmes of pharmaceutical companies.

Submitting Institution

University College London

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Neurosciences, Pharmacology and Pharmaceutical Sciences

Improved health and survival rates for patients with malignant brain and prostate cancer, and economic benefit from new chemotherapy treatments.

Summary of the impact

The Cancer Research UK Formulation Unit at the University of Strathclyde performed the pharmaceutical research and development of new chemotherapy treatments for malignant brain and prostate cancer (temozolomide and abiraterone acetate). These two drugs are now marketed globally, with FDA approval for the US market in 1999 and 2011 respectively, and have directly improved the quality of life and increased survival rates during treatment for over a quarter of a million cancer patients annually since 2008. Temozolomide achieved $1 billion sales per annum in 2008, and Abiraterone global sales reached $1.45 billion by 2013. Both drugs have produced economic benefit to the charity Cancer Research UK through royalty payments.

Submitting Institution

University of Strathclyde

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Topical formulation development using in silico and in vitro/ex vivo models

Summary of the impact

The university's Pharmacy and Pharmacology unit has developed and validated novel in silico and in vitro/ex vivo models for use by the pharma industry to select drug candidates, optimise formulations, determine the posology for clinical trials and show bioequivalence. This resulted in: the approval of two products for actinic keratosis (Picato® and Zyclara®); a generic nail formulation approved for use based on the demonstration of equivalence using the in vitro/ex vivo models described with no clinical testing (the first time this has occurred); and the translation and commercialisation of two dermal drug delivery-based patented technologies (licensing deals with Sinclair IS and major pharmaceutical companies).

Submitting Institution

University of Hertfordshire

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Therapeutic protein and vaccine stabilisation technology with global reach across the pharmaceutical industry

Summary of the impact

A novel self-assembly process, developed at WestCHEM was shown to provide a step-change for stabilising proteins as dry powders. The spin-out company, XstalBio, was created in 2004 and licensed the patented technology with the aim of developing it for delivery and formulation of therapeutic biomolecules and vaccines. Over the period 2008-2012, eight leading international pharmaceutical and animal health companies paid XstalBio over £2.2M for access to its IP portfolio and to undertake evaluation studies with candidate biomedicines and vaccines. XstalBio employed 8 highly skilled research scientists over this period and 4 further patent families were generated. Boehringer Ingelheim licensed the technology for application to its therapeutic biomolecules and in collaboration with XstalBio built a dedicated €5M pilot plant for manufacture of inhalable dry powders.

Submitting Institutions

University of Strathclyde,University of Glasgow

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Pharmacology and Pharmaceutical Sciences

Treatment of cancer with monoclonal antibodies

Summary of the impact

Southampton research underpins the clinical development of a new class of anti-cancer monoclonal antibodies (mAb), such as anti-CD40, anti-CD27 and anti-CD20. The most advanced is a next generation, fully human drug, ofatumumab (commercialised by GlaxoSmithKline/Genmab; trade-name Arzerra) approved in Oct 2009 to treat advanced chronic lymphocytic leukaemia. Its approval was based on a 42% response rate in patients who had failed current `best in class' treatment. Arzerra is now a multi-million dollar drug, launched in 26 countries (and growing) and is being used in 19 on-going clinical trials worldwide for diseases ranging from lymphoma to rheumatoid arthritis and multiple sclerosis. Southampton's work has inspired follow-on funding from government and industry in excess of £12m.

Submitting Institution

University of Southampton

Unit of Assessment

Clinical Medicine

Summary Impact Type

Technological

Research Subject Area(s)

Biological Sciences: Biochemistry and Cell Biology
Medical and Health Sciences: Immunology, Oncology and Carcinogenesis

Meeting clinical challenges in the UK and sub-Saharan Africa via drug redeployment.

Summary of the impact

The provision of effective and sustainable healthcare is a major challenge for society. In the developed world escalating costs are placing a huge burden on finite resources; in the developing world, where financial resources are often extremely limited, providing affordable healthcare is an even greater problem. One innovative route to help alleviate these problems is through drug redeployment, whereby existing drugs are employed in new ways to tackle serious diseases. Combining their knowledge of haematological disease gained from their research over the past 20 years together with a drug redeployment strategy, researchers in the School of Biosciences have developed and trialled new interventions for two blood cell cancers, Acute Myeloid Leukaemia (AML) and Burkitt's Lymphoma (BL), based on the administration of a combination of the lipid lowering drug Bezalip (Bez) and the female contraceptive Provera (MPA). As a result:

  • Definitive significant outcomes have been demonstrated in terms of halting disease progression and / or diminishing disease load in patients suffering from AML and BL.
  • Successful drug redeployment, on the basis of efficacy, absence of toxicity and low cost of drugs has been achieved.
  • This intervention has created the means to reduce childhood mortality and improve the length and quality of life in areas of sub-Saharan Africa.

Submitting Institution

University of Birmingham

Unit of Assessment

Biological Sciences

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Clinical Sciences, Oncology and Carcinogenesis, Pharmacology and Pharmaceutical Sciences

Inhaled delivery of life-saving medicines - The Vectura story

Summary of the impact

Innovative formulation science to create and develop the commercially successful PowderHale® technology was undertaken within the Department of Pharmacy & Pharmacology at the University of Bath, and subsequently by Vectura. This has directly provided the basis for novel, potentially life-saving treatments for chronic obstructive pulmonary disease (COPD). Seebri® Breezhaler® and Ultibro® Breezhaler® are once-daily, maintenance bronchodilators for the relief of various symptoms due to airways obstruction caused by COPD. Seebri® Breezhaler® was approved in the EU and Japan at the end of 2012 and has now been launched by Novartis. Ultibro® Breezhaler® a first-in-class combination bronchodilator was approved in Japan and the EU in September 2013. Under the terms of the licence agreement with Novartis concerning these products, Vectura has already received $52.5M with an additional >$100M anticipated upon achievement of regulatory and commercialisation targets. These medicines are major advances to treat and manage a disease that, according to the WHO, affects an estimated 210 million people worldwide and was the third leading cause of death in the developed world in 2012.

Submitting Institution

University of Bath

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering
Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

3. Inhaled medicines: Leveraging benefits to global pharma and international development.

Summary of the impact

i2c Pharmaceutical Services is the trading name for a Cardiff University spin-out company based on Cardiff University research excellence and specialising in pharmaceutical inhaler product research and development. i2c's research in formulation technologies and clinical testing has enabled development of new inhalational medicinal products for the healthcare markets in both developed and emerging countries. Impacts arising from research are at local, national and international levels and evidenced by marketed products, the improved business performance of commercial concerns and the creation of highly skilled jobs.

Submitting Institution

Cardiff University

Unit of Assessment

Allied Health Professions, Dentistry, Nursing and Pharmacy

Summary Impact Type

Technological

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Pharmacology and Pharmaceutical Sciences

Development of an Effective Cure for River Blindness (Onchocerciasis) and Elephantiasis (Lymphatic Flariasis [LF]) and a New Tool for Control, Elimination and Morbidity Management

Summary of the impact

Scientists at the Liverpool School of Tropical Medicine (LSTM) have proven that targeting an essential bacterial symbiont, Wolbachia, with a course of antibiotics cures patients of their parasitic worms and improves disease pathology. This discovery in 1999 offers superior efficacy compared to existing anti-filarial drugs delivering prophylaxis, transmission blocking, safe macrofilaricidal activity and improved case management therapy. This approach has been endorsed by WHO elimination programmes for onchocerciasis, (Onchocerciasis Elimination Programme for the Americas, OEPA) and lymphatic filariasis (Global Programme to Eliminate Lymphatic Filariasis, GPELF). The Centre for Disease Control (CDC), also recommends this new strategy for elimination and morbidity management.

Submitting Institutions

University of Liverpool,Liverpool School of Tropical Medicine

Unit of Assessment

Clinical Medicine

Summary Impact Type

Health

Research Subject Area(s)

Medical and Health Sciences: Cardiorespiratory Medicine and Haematology, Clinical Sciences, Medical Microbiology

Biocompatible polymer coatings for the long-term implantation of biomedical devices in humans

Summary of the impact

Biomedical devices that need to be implanted into the body typically experience the so-called foreign-body reaction: proteins adhere to the surface of the devices, leading to rapid loss of function and, eventually, to a requirement for replacing the device. Between October 2006 and September 2011, The University of Reading, in collaboration with the UK SME BioInteractions Ltd., developed and evaluated a range of new polymers for coating implantable biomedical devices, especially coronary stents and catheters. The result was a coating system that can deliver a drug controllably over a pre-defined period, leading to the commercial biomaterials platforms AdaptTM and AssistTM. This work resulted in capital investment by Biointeractions Ltd and a substantial increase in their research staffing.

Submitting Institution

University of Reading

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Biomedical Engineering, Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies