Similar case studies

REF impact found 43 Case Studies

Currently displayed text from case study:

Economic impact through improved product and process development within Carron Phoenix.

Summary of the impact

Initial research into polymer nanocomposites and their formation took place at Strathclyde from 2000 - 2010. This was followed by a collaboration with the world's largest manufacturer of composite kitchen sinks, Carron Phoenix Limited, through a 6-year Knowledge Transfer Partnership (KTP) which resulted in a successful new production process of its high-end synthetic granite kitchen sinks. This led to £4 million of capital investment in new production facilities at their Falkirk site, enabling the company to sustain its leading position in the designer kitchen sink market and retain its workforce of over 400 employees in central Scotland, including the 170 workers in the composite sink division in Falkirk. Within the REF period, the research has led to the manufacture and sale of in excess of one million kitchen sinks, generating sales revenue in excess of over £50M and supporting the UK economy.

Submitting Institution

University of Strathclyde

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Chemical Engineering, Materials Engineering, Resources Engineering and Extractive Metallurgy

Baffled Reactors for Continuous Reaction and Crystallisation

Summary of the impact

Research at Heriot-Watt University (HWU) has led to the development of a new continuous oscillatory baffled reactor and crystalliser technology. This has direct economic and environmental impact in the chemical, pharmaceutical and food industries. Waste is substantially reduced, while the scale of the equipment and plant is dramatically decreased, reducing time to market, start-up and maintenance costs and on-going energy usage. The reactor/crystalliser was taken to market through a spinout, NiTech Solutions Ltd, with a peak of 16 employees in the REF period. Genzyme (now Sanofi) has implemented NiTech's technology for biopharmaceutical manufacture since 2007, with multi-100 ton production and sales of multi-£100M pa. The technology now underpins the larger-scale joint venture, the Continuous Manufacture and Crystallisation (CMAC) consortium, launched in 2010. CMAC has attracted over £60M investment, much of it from three major industrial partners, GSK, AstraZeneca and Novartis, with additional second-tier investors. CMAC is accelerating the introduction of new process-intensification technologies in the process industries.

Submitting Institution

Heriot-Watt University

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Other Chemical Sciences
Engineering: Chemical Engineering, Interdisciplinary Engineering

SmartPoint: dramatically reducing the failure rate of root canal treatments in orthodontistry

Summary of the impact

A manufacturing process developed by Bradford researchers has revolutionised the way endodontists perform root canal treatments. When coated with a hydrophilic polymer, the highly-filled hygroscopic material has enabled UK company DRFP to develop SmartPoint — a new endodontic technique that dramatically reduces failure rates of root canal treatments from 11-30% over five years to approximately 1%, and gives lower levels of post-operative pain when compared with conventional techniques. The technology has won three awards for innovation and DRFP has expanded significantly, with a dedicated production facility and sales team offering visits to dentists to demonstrate the benefits of the technology.

Submitting Institution

University of Bradford

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Health

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering, Interdisciplinary Engineering

Novel low fat food products leading to improved health and new market share using soft solid microstructures

Summary of the impact

The impact presented is the use of research carried out in the School of Chemical Engineering by a range of multinational food industries (inc. Unilever, Cargill, PepsiCo) to engineer a series of fat-reduced foods such as low fat spreads (LFS), dressings, margarine, sauces and mayonnaise. This has allowed them to build up a portfolio of novel low fat products; this portfolio would be much reduced or in some cases non-existent without the research contribution and capability generated by the Birmingham group as stated by Peter Lillford5.1 (former Chief Scientist, Unilever) and John Casey, (Vice President Biological Sciences, Unilever)5.2. These products are a significant and growing market segment e.g. LFS now outsell margarine/butter in a number of countries and are estimated to be worth globally 10 Billion Euros per year between 2008-13. Thus these products are having a significant impact on the industries' profitability. In addition, consumption of low fat foods act to tackle obesity with knock on effects for government (health service, lost GDP etc.) and the community as a whole.

Submitting Institution

University of Birmingham

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Physical Chemistry (incl. Structural)

Supercritical Fluids – Critical Pharmaceuticals Ltd (CS1)

Summary of the impact

The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Engineering: Biomedical Engineering

The Impact of Physical Organic Chemistry Research at Huddersfield

Summary of the impact

University of Huddersfield research in physical organic chemistry has delivered economic, industrial and societal benefits. It has led to process improvements in chemical manufacturing, most notably in the optimisation of the synthesis of antisense oligonucleotides and in the use of liquid ammonia as a solvent. It has also led to the development of new inhibitors of bacterial β-lactamases for use as antibacterials. The research team's expertise has been reflected in the success of IPOS (Innovative Physical Organic Solutions), a unit established in 2006 to carry out research in process and other areas of chemistry for the chemical industry. IPOS expanded significantly from 2009 to 2013 and has now collaborated with more than 150 companies, many of them based in Yorkshire/Humberside where regeneration is critically dependent on the success of new, non-traditional, high-technology firms and industries. Through these collaborative projects, IPOS has contributed to the growth and prosperity of both regional and national industry.

Submitting Institution

University of Huddersfield

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Organic Chemistry, Physical Chemistry (incl. Structural), Other Chemical Sciences

QUB plays Pivotal Role in Rotomoulding Global Success Stories

Summary of the impact

Researchers in QUB developed the first commercial process control system (Rotolog) and simulation software (RotoSim) for the Rotomoulding Plastics Industry. There has also been recent commercialisation of a new energy-saving system, the Rotocooler.

The fundamental understanding of the process that was developed also enabled the moulding of new materials for new application areas, notably motorcycle fuel tanks (now used by BMW, Ducati, Harley Davidson and Honda) and the world's first concept car made from sustainable polymers.

Global economic and environmental impact arises from a significantly more efficient process, better product quality, a greater selection of processable materials and thus increased sales.

Submitting Institution

Queen's University Belfast

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Chemical Engineering, Materials Engineering

Affordable Diffusion Bonding (ADB) of laminate sheet to produce micro-cellular structures relevant for ultra-lightweighting and high efficiency thermal and chemical devices for the aerospace, automotive, medical, chemical manufacturing sectors.

Summary of the impact

Diffusion bonding (DB) is well-known for producing structured materials with fine scale features and is a critical technology for high efficiency reactors, e.g. heat exchangers and fuel cells, but currently equipment is slow and expensive (and there are size limitations to the `assemblies' that can be built). The University has researched and developed, with industry partners, a rapid affordable diffusion bonding (ADB) process involving direct heating to provide appropriate temperature and stress states and utilising flexible ultra-insulation (vacuum) for pressing titanium (and now aluminium) sheets together. The process operates at low stresses thus avoiding `channel' collapse. Investment is taking place in the partner companies to exploit the technology. A breakthrough has been achieved in the chemical machining of three dimensional structures for laminar flow technology assemblies in aluminium and titanium, that can be built by ADB.

Submitting Institution

University of Wolverhampton

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Manufacturing Engineering, Materials Engineering

BRITEST – Best Route Innovative Technology Evaluation and Selection Techniques

Summary of the impact

BRITEST is a global leader in the development of innovative process solutions for the chemical processing sector with > £500m of value being realized since 2008. Research in Manchester (1997-2000) generated a set of novel tools and methodologies which analyse chemical processes to identify where and how process improvements could be made. BRITEST was established in 2001 as a not-for-profit company to manage the technology transfer and effective deployment of these tools and methodologies into industry. Manchester holds the IP arising from the underpinning research and has granted an exclusive license to BRITEST for use and exploitation of the toolkit.

Submitting Institution

University of Manchester

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Mathematical Sciences: Applied Mathematics
Information and Computing Sciences: Artificial Intelligence and Image Processing, Information Systems

Biocatalysis integrated with chemistry and engineering to speed development of green pharmaceutical processes (BiCE programme)

Summary of the impact

UCL research has been instrumental in creating critically needed new biocatalysts and bioprocess technologies for industrial biocatalytic process development. These have impact across the UK chemical and pharmaceutical sectors. BiCE enzyme technologies have been exploited through the formation of a spin-out company, Synthace, generating investment of £1.8m and creation of 7 new jobs. Commercial utilisation of BiCE enzymes by company partners has led to environmental benefits through sustainable syntheses and reduced waste generation. BiCE high-throughput bioprocess technologies have also been adopted to speed biocatalytic process development. UCL established a parallel miniature stirred bioreactor system as a new product line for HEL Ltd. [text removed for publication]. Related knowledge transfer activities have also benefited some 157 industrial employees from over 50 companies since 2008.

Submitting Institution

University College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Physical Chemistry (incl. Structural)

Filter Impact Case Studies

Download Impact Case Studies