Similar case studies

REF impact found 56 Case Studies

Currently displayed text from case study:

Informing public understanding of nanoscience and materials for energy applications (CS5)

Summary of the impact

The School of Chemistry has a long track record of pioneering and innovative outreach activities aimed at stimulating public interest and understanding in chemistry research and its societal impact. During the period 2008-2013 it successfully communicated to a wide-ranging audience the significance of a series of "firsts" in the areas of nanoscience and materials for energy applications. Using YouTube, Royal Society Summer Science Exhibitions, roadshows and science festivals, this award-winning approach has engaged hundreds of thousands through digital media and thousands more face-to-face, raising public awareness, inspiring interest in science and delivering educational benefits for students and teachers alike.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Societal

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

CS1 - Innovative chemistry reduces the environmental impact of mining and pharmaceutical manufacture

Summary of the impact

The technology in this impact study is based on organofunctionalised silica materials that can address market needs for high purity in compounds that underpin many areas of the pharma, electronic and medical sectors as well as the recovery of limited resources such as precious metals that are used in diverse industries. Since the launch of the product portfolio in 2006, the materials have become embedded in purification or recovery steps in commercial production processes of leading mining (South Africa), pharmaceutical (UK) and petrochemical (Germany) companies and make a significant impact on the business of these companies as well as limiting waste of limited resources.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

Supercritical Fluids – Critical Pharmaceuticals Ltd (CS1)

Summary of the impact

The University of Nottingham's School of Chemistry has developed a novel method of incorporating thermally or chemically labile biologically active substances into polymers. This has been achieved by using supercritical carbon dioxide as a medium for the synthesis and modification of polymeric materials. The method has been employed as the basis for new drug-delivery devices whose viability in the healthcare sphere has been confirmed by patient trials. The spin-out company, Critical Pharmaceuticals Ltd, has delivered a range of economic benefits, including job creation, the securing of millions of pounds' worth of investment and a number of revenue-generating research collaborations.

Submitting Institution

University of Nottingham

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Organic Chemistry
Engineering: Biomedical Engineering

Nanoforce Technology Ltd. Assists in the Development of Materials and Processes for Industry

Summary of the impact

Nanoforce Technology Ltd. is a spin-out company wholly owned by QMUL, active in the field of polymeric and ceramic materials. Bridging the gap between academic research and industrial applications, Nanoforce has done business with over 100 companies since 2008, providing the key research expertise and specialist facilities to enable the development of new materials and commercial products, including Sugru® a room temperature vulcanizing silicone rubber, Zelfo® a self-binding cellulose material, and BiotexTM a range of high-performance yarns, fabrics and pre- consolidated sheets based renewable resources such as PLA and natural flax fibres. Nanoforce has been promoting the development and commercialisation of spark plasma sintering (SPS) since 2006, which resulted in Kennametal recently opening the first commercial SPS facility in the UK to produce advanced ceramic armour. Nanoforce's clients have included large multi-nationals such as DSM, Dow Chemical, General Electric, SABIC, L'Oreal, Shell, Sibelco, governmental agencies such as Defence Science and Technology Laboratory (Dstl), and a large number of SME's.

Submitting Institution

Queen Mary, University of London

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)
Engineering: Materials Engineering

XeraCarb Limited: A Spin-out from Sheffield Hallam University Manufacturing Novel Ceramic Composites

Summary of the impact

XeraCarb Ltd is a spin-out company formed in 2011 to exploit a class of ceramic composite materials co-invented by Jones. These materials were first devised in 2008 via a Materials and Engineering Research Institute (MERI) Knowledge Transfer activity and developed from 2009 onwards through a series of UK Ministry of Defence (UK MoD)-funded research projects. XeraCarb was spun out after the underpinning research won a national award in 2011 as the most promising UK materials system for commercialisation. The applications for XeraCarb's materials range from body- and vehicle-armour to kiln furniture and wear-resistant components. The company has attracted significant venture capital investment and is valued at over £1m. It has set up an independent production facility, has appointed employees, has been awarded a TSB grant, has materials undergoing trials in respect of a number of applications, and has delivered its first orders.

Submitting Institution

Sheffield Hallam University

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Engineering: Materials Engineering

Optimising materials interfaces: Supporting the growth of an SME

Summary of the impact

Since the mid-1990s, the Materials and Structures Research Group has been conducting research into materials-joining processes, including metal-ceramic joining for high-temperature applications. The group's research on metal-ceramic interfacial relationships and metal-ceramic joining subsequently assisted Cambridge-based C4 Carbides to optimise metal-to-diamond brazing and develop cutting tools with improved quality and longer lifetimes. Since 2010 the company has also [text removed for publication]

This continuing collaboration has helped C4 Carbides secure a TSB smart award and begin its strategic shift from niche SME to mainstream supplier.

Submitting Institution

University of Hertfordshire

Unit of Assessment

General Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry
Engineering: Materials Engineering

Unprecedentedly high modulus, high tensile strength light weight tapes and films for demanding applications

Summary of the impact

The development of disentangled, ultrahigh molecular weight polyethylene at Loughborough University since January 2007 has provided an environmental friendly route to the manufacture of high modulus, high tensile strength tapes with applications ranging from body armour to helmets, ropes and cables. Commercialisation is being undertaken by the Japanese company Teijin, in the Netherlands, under the brand name Endumax®. The new business, started in 2011, now employs >80 staff and predicts annual sales of >€15M from 2014 with an increase of ~10% over the first five years. Competitors such as Du Pont (Tensylon®) and DSM (Dyneema BT10®) have also initiated development of products using the new process route.

Submitting Institution

Loughborough University

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Macromolecular and Materials Chemistry
Engineering: Materials Engineering

15. Advanced Sorption Instruments for Powder Characterisation

Summary of the impact

Novel vapour sorption experimental methods for the characterisation of complex particulate materials have been developed in the Department of Chemical Engineering. This research and expertise resulted in the creation of Surface Measurement Systems Limited (SMS), whose Dynamic Vapour Sorption (DVS) and Inverse Gas Chromatography (IGC) instruments are now found in >500 laboratories around the world. They are recognised standard research and development tools in the global pharmaceutical industry (DIN 66138). SMS has contributed >270 man-years of employment and generated £27M of turnover, whilst SMS instruments have generated over £300M of economic value, over the REF period.

Submitting Institution

Imperial College London

Unit of Assessment

Aeronautical, Mechanical, Chemical and Manufacturing Engineering

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Analytical Chemistry, Macromolecular and Materials Chemistry, Physical Chemistry (incl. Structural)

C1 - The Founding of Argenta Discovery and Pulmagen Therapeutics

Summary of the impact

The growth and performance of Biofocus Galapagos Argenta (BGA) and Pulmagen Therapeutics (PT) are underpinned by research from the Imperial-based TeknoMed project that started in 1997. BGA was formed in 2010 through the acquisition of Argenta Discovery (AD) by Biofocus Galapagos for €16.5 million and is one of the world's largest drug discovery service organisations with 390 plus employees and turnover of €135 million [section 5, A]. PT was formed as a separate company to own the complete AD drug pipeline. It develops new medicines to treat asthma, cystic fibrosis and allergic diseases. In 2011 BGA signed agreements with PT for an initial £6million fee and with Genentech for £21.5million.

Submitting Institution

Imperial College London

Unit of Assessment

Chemistry

Summary Impact Type

Technological

Research Subject Area(s)

Chemical Sciences: Inorganic Chemistry, Organic Chemistry, Other Chemical Sciences

UOA13-01: Developing the 3 dimensional Atom Probe

Summary of the impact

Research in the UAO has led to major advances in the technique of Atom Probe microanalysis. The UOA pioneered the concept of position sensitive detectors for Atom Probe instruments, generated the first 3D data and built the first prototype instruments. Following a series of patented advances and the formation of a spin-off company (subsequently incorporated into Ametek), research in the UOA has led directly to the sale of 45 Local Electrode Atom Probe (LEAP) instruments since 2008 with a value of $102M. These instruments have been used to provide atomic scale chemical information vital to the design of new commercial alloys and to safety cases for life extension of nuclear power plants.

Submitting Institution

University of Oxford

Unit of Assessment

Electrical and Electronic Engineering, Metallurgy and Materials

Summary Impact Type

Technological

Research Subject Area(s)

Physical Sciences: Other Physical Sciences
Chemical Sciences: Analytical Chemistry
Engineering: Materials Engineering

Filter Impact Case Studies

Download Impact Case Studies